scholarly journals The Dependence of Global Cloud and Lapse Rate Feedbacks on the Spatial Structure of Tropical Pacific Warming

2018 ◽  
Vol 31 (2) ◽  
pp. 641-654 ◽  
Author(s):  
Timothy Andrews ◽  
Mark J. Webb

An atmospheric general circulation model (AGCM) is forced with patterns of observed sea surface temperature (SST) change and those output from atmosphere–ocean GCM (AOGCM) climate change simulations to demonstrate a strong dependence of climate feedback on the spatial structure of surface temperature change. Cloud and lapse rate feedbacks are found to vary the most, depending strongly on the pattern of tropical Pacific SST change. When warming is focused in the southeast tropical Pacific—a region of climatological subsidence and extensive marine low cloud cover—warming reduces the lower-tropospheric stability (LTS) and low cloud cover but is largely trapped under an inversion and hence has little remote effect. The net result is a relatively weak negative lapse rate feedback and a large positive cloud feedback. In contrast, when warming is weak in the southeast tropical Pacific and enhanced in the west tropical Pacific—a strong convective region—warming is efficiently transported throughout the free troposphere. The increased atmospheric stability results in a strong negative lapse rate feedback and increases the LTS in low cloud regions, resulting in a low cloud feedback of weak magnitude. These mechanisms help explain why climate feedback and sensitivity change on multidecadal time scales in AOGCM abrupt4xCO2 simulations and are different from those seen in AGCM experiments forced with observed historical SST changes. From the physical understanding developed here, one should expect unusually negative radiative feedbacks and low effective climate sensitivities to be diagnosed from real-world variations in radiative fluxes and temperature over decades in which the eastern Pacific has lacked warming.

2019 ◽  
Vol 32 (9) ◽  
pp. 2497-2516 ◽  
Author(s):  
Ehsan Erfani ◽  
Natalie J. Burls

Abstract Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2 forcing within a single model, thereby isolating the impact of low-cloud feedback strength. The feedback strength is varied by modifying the stratus cloud fraction so that it is a function of not only local conditions but also global temperature in a series of abrupt 2 × CO2 sensitivity experiments. The unperturbed decrease in low cloud cover (LCC) under 2 × CO2 is greatest in the mid- and high-latitude oceans, and the subtropical eastern Pacific and Atlantic, a pattern that is magnified as the feedback strength is scaled. Consequently, sea surface temperature (SST) increases more in these regions as well as the Pacific cold tongue. As the strength of the low-cloud feedback increases this results in not only increased ECS, but also an enhanced reduction of the large-scale zonal and meridional SST gradients (structural climate sensitivity), with implications for the atmospheric Hadley and Walker circulations, as well as the hydrological cycle. The relevance of our results to simulating past warm climate is also discussed.


2006 ◽  
Vol 19 (24) ◽  
pp. 6425-6432 ◽  
Author(s):  
Robert Wood ◽  
Christopher S. Bretherton

Abstract Observations in subtropical regions show that stratiform low cloud cover is well correlated with the lower-troposphere stability (LTS), defined as the difference in potential temperature θ between the 700-hPa level and the surface. The LTS can be regarded as a measure of the strength of the inversion that caps the planetary boundary layer (PBL). A stronger inversion is more effective at trapping moisture within the marine boundary layer (MBL), permitting greater cloud cover. This paper presents a new formulation, called the estimated inversion strength (EIS), to estimate the strength of the PBL inversion given the temperatures at 700 hPa and at the surface. The EIS accounts for the general observation that the free-tropospheric temperature profile is often close to a moist adiabat and its lapse rate is strongly temperature dependent. Therefore, for a given LTS, the EIS is greater at colder temperatures. It is demonstrated that while the seasonal cycles of LTS and low cloud cover fraction (CF) are strongly correlated in many regions, no single relationship between LTS and CF can be found that encompasses the wide range of temperatures occurring in the Tropics, subtropics, and midlatitudes. However, a single linear relationship between CF and EIS explains 83% of the regional/seasonal variance in stratus cloud amount, suggesting that EIS is a more regime-independent predictor of stratus cloud amount than is LTS under a wide range of climatological conditions. The result has some potentially important implications for how low clouds might behave in a changed climate. In contrast to Miller’s thermostat hypothesis that a reduction in the lapse rate (Clausius–Clapeyron) will lead to increased LTS and increased tropical low cloud cover in a warmer climate, the results here suggest that low clouds may be much less sensitive to changes in the temperature profile if the vertical profile of tropospheric warming follows a moist adiabat.


2008 ◽  
Vol 21 (18) ◽  
pp. 4859-4878 ◽  
Author(s):  
Minghua Zhang ◽  
Christopher Bretherton

Abstract This study investigates the physical mechanism of low cloud feedback in the Community Atmospheric Model, version 3 (CAM3) through idealized single-column model (SCM) experiments over the subtropical eastern oceans. Negative cloud feedback is simulated from stratus and stratocumulus that is consistent with previous diagnostics of cloud feedbacks in CAM3 and its predecessor versions. The feedback occurs through the interaction of a suite of parameterized processes rather than from any single process. It is caused by the larger amount of in-cloud liquid water in stratus clouds from convective sources, and longer lifetimes of these clouds in a warmer climate through their interaction with boundary layer turbulence. Thermodynamic effects are found to dominate the negative cloud feedback in the model. The dynamic effect of weaker subsidence in a warmer climate also contributes to the negative cloud feedback, but with about one-quarter of the magnitude of the thermodynamic effect, owing to increased low-level convection in a warmer climate.


2020 ◽  
Vol 20 (6) ◽  
pp. 3415-3438 ◽  
Author(s):  
Hendrik Andersen ◽  
Jan Cermak ◽  
Julia Fuchs ◽  
Peter Knippertz ◽  
Marco Gaetani ◽  
...  

Abstract. Fog is a defining characteristic of the climate of the Namib Desert, and its water and nutrient input are important for local ecosystems. In part due to sparse observation data, the local mechanisms that lead to fog occurrence in the Namib are not yet fully understood, and to date, potential synoptic-scale controls have not been investigated. In this study, a recently established 14-year data set of satellite observations of fog and low clouds in the central Namib is analyzed in conjunction with reanalysis data in order to identify synoptic-scale patterns associated with fog and low-cloud variability in the central Namib during two seasons with different spatial fog occurrence patterns. It is found that during both seasons, mean sea level pressure and geopotential height at 500 hPa differ markedly between fog/low-cloud and clear days, with patterns indicating the presence of synoptic-scale disturbances on fog and low-cloud days. These regularly occurring disturbances increase the probability of fog and low-cloud occurrence in the central Namib in two main ways: (1) an anomalously dry free troposphere in the coastal region of the Namib leads to stronger longwave cooling of the marine boundary layer, increasing low-cloud cover, especially over the ocean where the anomaly is strongest; (2) local wind systems are modulated, leading to an onshore anomaly of marine boundary-layer air masses. This is consistent with air mass back trajectories and a principal component analysis of spatial wind patterns that point to advected marine boundary-layer air masses on fog and low-cloud days, whereas subsiding continental air masses dominate on clear days. Large-scale free-tropospheric moisture transport into southern Africa seems to be a key factor modulating the onshore advection of marine boundary-layer air masses during April, May, and June, as the associated increase in greenhouse gas warming and thus surface heating are observed to contribute to a continental heat low anomaly. A statistical model is trained to discriminate between fog/low-cloud and clear days based on information on large-scale dynamics. The model accurately predicts fog and low-cloud days, illustrating the importance of large-scale pressure modulation and advective processes. It can be concluded that regional fog in the Namib is predominantly of an advective nature and that fog and low-cloud cover is effectively maintained by increased cloud-top radiative cooling. Seasonally different manifestations of synoptic-scale disturbances act to modify its day-to-day variability and the balance of mechanisms leading to its formation and maintenance. The results are the basis for a new conceptual model of the synoptic-scale mechanisms that control fog and low-cloud variability in the Namib Desert and will guide future studies of coastal fog regimes.


2018 ◽  
Vol 31 (11) ◽  
pp. 4329-4346 ◽  
Author(s):  
Adeyemi A. Adebiyi ◽  
Paquita Zuidema

Abstract Shortwave-absorbing aerosols seasonally cover and interact with an expansive low-level cloud deck over the southeast Atlantic. Daily anomalies of the MODIS low cloud fraction, fine-mode aerosol optical depth (AODf), and six ERA-Interim meteorological parameters (lower-tropospheric stability, 800-hPa subsidence, 600-hPa specific humidity, 1000- and 800-hPa horizontal temperature advection, and 1000-hPa geopotential height) are constructed spanning July–October (2001–12). A standardized multiple linear regression, whereby the change in the low cloud fraction to each component’s variability is normalized by one standard deviation, facilitates comparison between the different variables. Most cloud–meteorology relationships follow expected behavior for stratocumulus clouds. Of interest is the low cloud–subsidence relationship, whereby increasing subsidence increases low cloud cover between 10° and 20°S but decreases it elsewhere. Increases in AODf increase cloudiness everywhere, independent of other meteorological predictors. The cloud–AODf effect is partially compensated by accompanying increases in the midtropospheric moisture, which is associated with decreases in low cloud cover. This suggests that the free-tropospheric moisture affects the low cloud deck primarily through longwave radiation rather than mixing. The low cloud cover is also more sensitive to aerosol when the vertical distance between the cloud and aerosol layer is relatively small, which is more likely to occur early in the biomass burning season and farther offshore. A parallel statistical analysis that does not include AODf finds altered relationships between the low cloud cover changes and meteorology that can be understood through the aerosol cross-correlations with the meteorological predictors. For example, the low cloud–stability relationship appears stronger if aerosols are not explicitly included.


2006 ◽  
Vol 19 (23) ◽  
pp. 6181-6194 ◽  
Author(s):  
Piers Mde F. Forster ◽  
Karl E. Taylor

Abstract A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled atmosphere–ocean general circulation models (AOGCMs). This “climate forcing” differs from the conventionally defined radiative forcing as it includes semidirect effects that account for certain short time scale responses in the troposphere. First, a climate feedback term is calculated from reported values of 2 × CO2 radiative forcing and surface temperature time series from 70-yr simulations by 20 AOGCMs. In these simulations carbon dioxide is increased by 1% yr−1. The derived climate feedback agrees well with values that are diagnosed from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor, and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. Partial compensation is found between longwave and shortwave feedback terms that lessens the intermodel differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback. These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in twentieth- and twenty-first-century simulations in the AOGCMs. The technique is validated using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings that are diagnosed agree with the conventional forcing time series within ∼10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of 2 differences in the longwave climate forcing time series, which may indicate problems with the modeling of well-mixed greenhouse gas changes. The simple diagnoses presented provides an important and useful first step for understanding differences in AOGCM integrations, indicating that some of the differences in model projections can be attributed to different prescribed climate forcing, even for so-called standard climate change scenarios.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sergio A. Sejas ◽  
Xiaoming Hu ◽  
Ming Cai ◽  
Hanjie Fan

Energy budget decompositions have widely been used to evaluate individual process contributions to surface warming. Conventionally, the top-of-atmosphere (TOA) energy budget has been used to carry out such attribution, while other studies use the surface energy budget instead. However, the two perspectives do not provide the same interpretation of process contributions to surface warming, particularly when executing a spatial analysis. These differences cloud our understanding and inhibit our ability to shrink the inter-model spread. Changes to the TOA energy budget are equivalent to the sum of the changes in the atmospheric and surface energy budgets. Therefore, we show that the major discrepancies between the surface and TOA perspectives are due to non-negligible changes in the atmospheric energy budget that differ from their counterparts at the surface. The TOA lapse-rate feedback is the manifestation of multiple processes that produce a vertically non-uniform warming response such that it accounts for the asymmetry between the changes in the atmospheric and surface energy budgets. Using the climate feedback-response analysis method, we are able to decompose the lapse-rate feedback into contributions by individual processes. Combining the process contributions that are hidden within the lapse-rate feedback with their respective direct impacts on the TOA energy budget allows for a very consistent picture of process contributions to surface warming and its inter-model spread as that given by the surface energy budget approach.


MAUSAM ◽  
2022 ◽  
Vol 52 (3) ◽  
pp. 527-540
Author(s):  
M. RAJEEVAN ◽  
R. K. PRASAD ◽  
U. S. DE

Surface cloud data based on synoptic observations made by Voluntary Observing Ships (VOS) during the period 1951-98 were used to prepare the seasonal and annual cloud climatology of the Indian Ocean. The analysis has been carried out by separating the long-term trends, decadal and inter-annual components from the monthly cloud anomaly time series at each 5° × 5° grids.   Maximum zone of total and low cloud cover shifts from equator to northern parts of India during the monsoon season. During the monsoon season (June-September), maximum total cloud cover exceeding 70% and low cloud cover exceeding 50% are observed over north Bay of Bengal. Maximum standard deviation of total and low cloud cover is observed near the equator and in the southern hemisphere. Both total and low cloud cover over Arabian Sea and the equatorial Indian Ocean are observed to decrease during the ENSO events. However, cloud cover over Bay of Bengal is not modulated by the ENSO events. On inter-decadal scale, low cloud cover shifted from a "low regime" to a "high regime" after 1980 which may be associated with the corresponding inter-decadal changes of sea surface temperatures over north Indian Ocean observed during the late 1970s.


Sign in / Sign up

Export Citation Format

Share Document