scholarly journals ENSO-Unrelated Variability in Indo–Northwest Pacific Climate: Regional Coupled Ocean–Atmospheric Feedback

2020 ◽  
Vol 33 (10) ◽  
pp. 4095-4108 ◽  
Author(s):  
Chuan-Yang Wang ◽  
Shang-Ping Xie ◽  
Yu Kosaka

AbstractRegional ocean–atmospheric interactions in the summer tropical Indo–northwest Pacific region are investigated using a tropical Pacific Ocean–global atmosphere pacemaker experiment with a coupled ocean–atmospheric model (cPOGA) and a parallel atmosphere model simulation (aPOGA) forced with sea surface temperature (SST) variations from cPOGA. Whereas the ensemble mean features pronounced influences of El Niño–Southern Oscillation (ENSO), the ensemble spread represents internal variability unrelated to ENSO. By comparing the aPOGA and cPOGA, this study examines the effect of the ocean–atmosphere coupling on the ENSO-unrelated variability. In boreal summer, ocean–atmosphere coupling induces local positive feedback to enhance the variance and persistence of the sea level pressure and rainfall variability over the northwest Pacific and likewise induces local negative feedback to suppress the variance and persistence of the sea level pressure and rainfall variability over the north Indian Ocean. Anomalous surface heat fluxes induced by internal atmosphere variability cause SST to change, and SST anomalies feed back onto the atmosphere through atmospheric convection. The local feedback is sensitive to the background winds: positive under the mean easterlies and negative under the mean westerlies. In addition, north Indian Ocean SST anomalies reinforce the low-level anomalous circulation over the northwest Pacific through atmospheric Kelvin waves. This interbasin interaction, along with the local feedback, strengthens both the variance and persistence of atmospheric variability over the northwest Pacific. The response of the regional Indo–northwest Pacific mode to ENSO and influences on the Asian summer monsoon are discussed.

2021 ◽  
Vol 9 (4) ◽  
pp. 408
Author(s):  
Xi Chen ◽  
Mei Hong ◽  
Shiqi Wu ◽  
Kefeng Liu ◽  
Kefeng Mao

To study the optimal design of Wave Glider parameters in the wave environment of the Northwest Pacific Ocean, the North Indian Ocean, and the South China Sea, the average velocity of a Wave Glider was taken as the evaluation criterion. Wave reanalysis data from ERA5 were used to classify the mean wave height and period into five types by the K-means clustering method. In addition, a dynamic model was used to simulate the influence of umbilical length, airfoil, and maximum limited angle on the velocity of the Wave Glider under the five types of wave element. The force of the wings was simulated using FLUENT as the model input. The simulation results show that (1) 7 m is the most suitable umbilical length; (2) a smaller relative thickness should be selected in perfect conditions; and (3) for the first type of wave element, 15° is the best choice for the maximum limited angle, and 20° is preferred for the second, third, and fourth types, while 25° is preferred for the fifth type.


2021 ◽  
Vol 13 (4) ◽  
pp. 661
Author(s):  
Mohamed Freeshah ◽  
Xiaohong Zhang ◽  
Erman Şentürk ◽  
Muhammad Arqim Adil ◽  
B. G. Mousa ◽  
...  

The Northwest Pacific Ocean (NWP) is one of the most vulnerable regions that has been hit by typhoons. In September 2018, Mangkhut was the 22nd Tropical Cyclone (TC) over the NWP regions (so, the event was numbered as 1822). In this paper, we investigated the highest amplitude ionospheric variations, along with the atmospheric anomalies, such as the sea-level pressure, Mangkhut’s cloud system, and the meridional and zonal wind during the typhoon. Regional Ionosphere Maps (RIMs) were created through the Hong Kong Continuously Operating Reference Stations (HKCORS) and International GNSS Service (IGS) data around the area of Mangkhut typhoon. RIMs were utilized to analyze the ionospheric Total Electron Content (TEC) response over the maximum wind speed points (maximum spots) under the meticulous observations of the solar-terrestrial environment and geomagnetic storm indices. Ionospheric vertical TEC (VTEC) time sequences over the maximum spots are detected by three methods: interquartile range method (IQR), enhanced average difference (EAD), and range of ten days (RTD) during the super typhoon Mangkhut. The research findings indicated significant ionospheric variations over the maximum spots during this powerful tropical cyclone within a few hours before the extreme wind speed. Moreover, the ionosphere showed a positive response where the maximum VTEC amplitude variations coincided with the cyclone rainbands or typhoon edges rather than the center of the storm. The sea-level pressure tends to decrease around the typhoon periphery, and the highest ionospheric VTEC amplitude was observed when the low-pressure cell covers the largest area. The possible mechanism of the ionospheric response is based on strong convective cells that create the gravity waves over tropical cyclones. Moreover, the critical change state in the meridional wind happened on the same day of maximum ionospheric variations on the 256th day of the year (DOY 256). This comprehensive analysis suggests that the meridional winds and their resulting waves may contribute in one way or another to upper atmosphere-ionosphere coupling.


2018 ◽  
Vol 31 (24) ◽  
pp. 10123-10139 ◽  
Author(s):  
Chuan-Yang Wang ◽  
Shang-Ping Xie ◽  
Yu Kosaka

El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.


2010 ◽  
Vol 67 (4) ◽  
pp. 999-1025 ◽  
Author(s):  
Scott A. Braun ◽  
Michael T. Montgomery ◽  
Kevin J. Mallen ◽  
Paul D. Reasor

Abstract Several hypotheses have been put forward for the mechanisms of generation of surface circulation associated with tropical cyclones. This paper examines high-resolution simulations of Tropical Storm Gert (2005), which formed in the Gulf of Mexico during NASA’s Tropical Cloud Systems and Processes Experiment, to investigate the development of low-level circulation and its relationship to the precipitation evolution. Two simulations are examined: one that better matches available observations but underpredicts the storm’s minimum sea level pressure and a second one that somewhat overintensifies the storm but provides a set of simulations that encapsulates the overall genesis and development characteristics of the observed storm. The roles of convective and stratiform precipitation processes within the mesoscale precipitation systems that formed Gert are discussed. During 21–25 July, two episodes of convective system development occurred. In each, precipitation system evolution was characterized by intense and deep convective upward motions followed by increasing stratiform-type vertical motions (upper-level ascent, low-level descent). Potential vorticity (PV) in convective regions was strongest at low levels while stratiform-region PV was strongest at midlevels, suggesting that convective processes acted to spin up lower levels prior to the spinup of middle levels by stratiform processes. Intense vortical hot towers (VHTs) were prominent features of the low-level cyclonic vorticity field. The most prominent PV anomalies persisted more than 6 h and were often associated with localized minima in the sea level pressure field. A gradual aggregation of the cyclonic PV occurred as existing VHTs near the center continually merged with new VHTs, gradually increasing the mean vorticity near the center. Nearly concurrently with this VHT-induced development, stratiform precipitation processes strongly enhanced the mean inflow and convergence at middle levels, rapidly increasing the midlevel vorticity. However, the stratiform vertical motion profile is such that while it increases midlevel vorticity, it decreases vorticity near the surface as a result of low-level divergence. Consequently, the results suggest that while stratiform precipitation regions may significantly increase cyclonic circulation at midlevels, convective vortex enhancement at low to midlevels is likely necessary for genesis.


2006 ◽  
Vol 19 (6) ◽  
pp. 998-1012 ◽  
Author(s):  
Bruce T. Anderson ◽  
Eric Maloney

Abstract This paper describes aspects of tropical interannual ocean/atmosphere variability in the NCAR Community Climate System Model Version 2.0 (CCSM2). The CCSM2 tropical Pacific Ocean/atmosphere system exhibits much stronger biennial variability than is observed. However, a canonical correlation analysis technique decomposes the simulated boreal winter tropical Pacific sea surface temperature (SST) variability into two modes, both of which are related to atmospheric variability during the preceding boreal winter. The first mode of ocean/atmosphere variability is related to the strong biennial oscillation in which La Niña–related sea level pressure (SLP) conditions precede El Niño–like SST conditions the following winter. The second mode of variability indicates that boreal winter tropical Pacific SST anomalies can also be initiated by SLP anomalies over the subtropical central and eastern North Pacific 12 months earlier. The evolution of both modes is characterized by recharge/discharge within the equatorial subsurface temperature field. For the first mode of variability, this recharge/discharge produces a lag between the basin-average equatorial Pacific isotherm depth anomalies and the isotherm–slope anomalies, equatorial SSTs, and wind stress fields. Significant anomalies are present up to a year before the boreal winter SLP variations and two years prior to the boreal winter ENSO-like events. For the second canonical factor pattern, the recharge/discharge mechanism is induced concurrent with the boreal winter SLP pattern approximately one year prior to the ENSO-like events, when isotherms initially deepen and change their slope across the basin. A rapid deepening of the isotherms in the eastern equatorial Pacific and a warming of the overlying SST anomalies then occurs during the subsequent 12 months.


2011 ◽  
Vol 33 (7) ◽  
pp. 1991-2002 ◽  
Author(s):  
P. G. Nisha ◽  
P. M. Muraleedharan ◽  
M. G. Keerthi ◽  
P. V. Sathe ◽  
M. Ravichandran

2009 ◽  
Vol 22 (8) ◽  
pp. 2023-2038 ◽  
Author(s):  
Yan Du ◽  
Shang-Ping Xie ◽  
Gang Huang ◽  
Kaiming Hu

Abstract El Niño induces a basin-wide increase in tropical Indian Ocean (TIO) sea surface temperature (SST) with a lag of one season. The north IO (NIO), in particular, displays a peculiar double-peak warming with the second peak larger in magnitude and persisting well through the summer. Motivated by recent studies suggesting the importance of the TIO warming for the Northwest Pacific and East Asian summer monsoons, the present study investigates the mechanisms for the second peak of the NIO warming using observations and general circulation models. This analysis reveals that internal air–sea interaction within the TIO is key to sustaining the TIO warming through summer. During El Niño, anticyclonic wind curl anomalies force a downwelling Rossby wave in the south TIO through Walker circulation adjustments, causing a sustained SST warming in the tropical southwest IO (SWIO) where the mean thermocline is shallow. During the spring and early summer following El Niño, this SWIO warming sustains an antisymmetric pattern of atmospheric anomalies with northeasterly (northwesterly) wind anomalies north (south) of the equator. Over the NIO as the mean winds turn into southwesterly in May, the northeasterly anomalies force the second SST peak that persists through summer by reducing the wind speed and surface evaporation. Atmospheric general circulation model experiments show that the antisymmetric atmospheric pattern is a response to the TIO warming, suggestive of their mutual interaction. Thus, ocean dynamics and Rossby waves in particular are important for the warming not only locally in SWIO but also on the basin-scale north of the equator, a result with important implications for climate predictability and prediction.


Sign in / Sign up

Export Citation Format

Share Document