Modeled Climate Responses to Realistic Extremes of Northern Hemisphere Spring and Summer Snow Anomalies

2020 ◽  
Vol 33 (22) ◽  
pp. 9905-9927
Author(s):  
Shizuo Liu ◽  
Qigang Wu ◽  
Lin Wang ◽  
Steven R. Schroeder ◽  
Yang Zhang ◽  
...  

AbstractNorthern Hemisphere (NH) snow cover extent (SCE) has diminished in spring and early summer since the 1960s. Historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) estimated about half as much NH SCE reduction as observed, and thus underestimated the associated climate responses. This study investigates atmospheric responses to realistic decreasing snow anomalies using multiple ensemble transient integrations of climate models forced by observed light and heavy NH snow cover years, specifically satellite-based observations of NH SCE and snow water equivalent from March to August in 1990 (light snow) and 1985 (heavy snow), as a proxy for the trend. The primary atmospheric responses to March–August NH snow reduction are decreased soil moisture, increased surface air temperature, general tropospheric warming in the extratropics and the Arctic, increased geopotential heights, and weakening of the midlatitude jet stream and eddy kinetic energy. The localized response is maintained by persistent increased diabatic heating due to reduced snow anomalies and resulting soil moisture drying, and the remote atmospheric response results partly from horizontal propagation of stationary Rossby wave energy and also from a transient eddy feedback mechanism. In summer, atmospheric responses are significant in both the Arctic and the tropics and are mostly induced by contemporaneous snow forcing, but also by the summer soil moisture dry anomaly associated with early snow melting.

2012 ◽  
Vol 6 (4) ◽  
pp. 3317-3348 ◽  
Author(s):  
C. Brutel-Vuilmet ◽  
M. Ménégoz ◽  
G. Krinner

Abstract. The 20th century seasonal Northern Hemisphere land snow cover as simulated by available CMIP5 model output is compared to observations. On average, the models reproduce the observed snow cover extent very well, but the significant trend towards a~reduced spring snow cover extent over the 1979–2005 is underestimated. We show that this is linked to the simulated Northern Hemisphere extratropical land warming trend over the same period, which is underestimated, although the models, on average, correctly capture the observed global warming trend. There is a good linear correlation between hemispheric seasonal spring snow cover extent and boreal large-scale annual mean surface air temperature in the models, supported by available observations. This relationship also persists in the future and is independent of the particular anthropogenic climate forcing scenario. Similarly, the simulated linear correlation between the hemispheric seasonal spring snow cover extent and global mean annual mean surface air temperature is stable in time. However, the sensitivity of the Northern Hemisphere spring snow cover to global mean surface air temperature changes is underestimated at present because of the underestimate of the boreal land temperature change amplification.


2013 ◽  
Vol 7 (1) ◽  
pp. 67-80 ◽  
Author(s):  
C. Brutel-Vuilmet ◽  
M. Ménégoz ◽  
G. Krinner

Abstract. The 20th century seasonal Northern Hemisphere (NH) land snow cover as simulated by available CMIP5 model output is compared to observations. On average, the models reproduce the observed snow cover extent very well, but the significant trend towards a reduced spring snow cover extent over the 1979–2005 period is underestimated (observed: (−3.4 ± 1.1)% per decade; simulated: (−1.0 ± 0.3)% per decade). We show that this is linked to the simulated Northern Hemisphere extratropical spring land warming trend over the same period, which is also underestimated, although the models, on average, correctly capture the observed global warming trend. There is a good linear correlation between the extent of hemispheric seasonal spring snow cover and boreal large-scale spring surface air temperature in the models, supported by available observations. This relationship also persists in the future and is independent of the particular anthropogenic climate forcing scenario. Similarly, the simulated linear relationship between the hemispheric seasonal spring snow cover extent and global mean annual mean surface air temperature is stable in time. However, the slope of this relationship is underestimated at present (observed: (−11.8 ± 2.7)% °C−1; simulated: (−5.1 ± 3.0)% °C−1) because the trend towards lower snow cover extent is underestimated, while the recent global warming trend is correctly represented.


2021 ◽  
Author(s):  
Kerttu Kouki ◽  
Petri Räisänen ◽  
Kari Luojus ◽  
Anna Luomaranta ◽  
Aku Riihelä

Abstract. Seasonal snow cover of the Northern Hemisphere (NH) is a major factor in the global climate system, which makes snow cover an important variable in climate models. Monitoring snow water equivalent (SWE) at continental scale is only possible from satellites, yet substantial uncertainties have been reported in NH SWE estimates. A recent bias-correction method significantly reduces the uncertainty of NH SWE estimation, which enables a more reliable analysis of the climate models' ability to describe the snow cover. We have intercompared the CMIP6 (Coupled Model Intercomparison Project Phase 6) and satellite-based NH SWE estimates north of 40° N for the period 1982–2014, and analyzed with a regression approach whether temperature (T) and precipitation (P) could explain the differences in SWE. We analyzed separately SWE in winter and SWE change rate in spring. The SnowCCI SWE data are based on satellite passive microwave radiometer data and in situ data. The analysis shows that CMIP6 models tend to overestimate SWE, however, large variability exists between models. In winter, P is the dominant factor causing SWE discrepancies especially in the northern and coastal regions. This is in line with the expectation that even too cold temperatures cannot cause too high SWE without precipitation. T contributes to SWE biases mainly in regions, where T is close to 0 °C in winter. In spring, the importance of T in explaining the snowmelt rate discrepancies increases. This is to be expected, because the increase in T is the main factor that causes snow to melt as spring progresses. Furthermore, it is obvious from the results that biases in T or P can not explain all model biases either in SWE in winter or in the snowmelt rate in spring. Other factors, such as deficiencies in model parameterizations and possibly biases in the observational datasets, also contribute to SWE discrepancies. In particular, linear regression suggests that when the biases in T and P are eliminated, the models generally overestimate the snowmelt rate in spring.


2020 ◽  
Author(s):  
Lawrence Mudryk ◽  
Maria Santolaria-Otín ◽  
Gerhard Krinner ◽  
Martin Ménégoz ◽  
Chris Derksen ◽  
...  

Abstract. This paper presents an analysis of observed and simulated historical snow cover extent and snow mass, along with future snow cover projections from models participating in the 6th phase of the World Climate Research Programme Coupled Model Inter-comparison Project (CMIP-6). Where appropriate, the CMIP-6 output is compared to CMIP-5 results in order to assess progress (or absence thereof) between successive model generations. An ensemble of six products are used to produce a new time series of northern hemisphere snow extent anomalies and trends; a subset of four of these products are used for snow mass. Trends in snow extent over 1981–2018 are negative in all months, and exceed −50 × 103 km2 during November, December, March, and May. Snow mass trends are approximately −5 Gt/year or more for all months from December to May. Overall, the CMIP-6 multi-model ensemble better represents the snow extent climatology over the 1981–2014 period for all months, correcting a low bias in CMIP-5. Simulated snow extent and snow mass trends over the 1981–2014 period are slightly stronger in CMIP-6 than in CMIP-5, although large inter-model spread remains in the simulated trends for both variables. There is a single linear relationship between projected spring snow extent and global surface air temperature (GSAT) changes, which is valid across all scenarios. This finding suggests that Northern Hemisphere spring snow extent will decrease by about 8 % relative to the 1995–2014 level per °C of GSAT increase. The sensitivity of snow to temperature forcing largely explains the absence of any climate change pathway dependency, similar to other fast response components of the cryosphere such as sea ice and near surface permafrost.


2013 ◽  
Vol 26 (18) ◽  
pp. 6904-6914 ◽  
Author(s):  
David E. Rupp ◽  
Philip W. Mote ◽  
Nathaniel L. Bindoff ◽  
Peter A. Stott ◽  
David A. Robinson

Abstract Significant declines in spring Northern Hemisphere (NH) snow cover extent (SCE) have been observed over the last five decades. As one step toward understanding the causes of this decline, an optimal fingerprinting technique is used to look for consistency in the temporal pattern of spring NH SCE between observations and simulations from 15 global climate models (GCMs) that form part of phase 5 of the Coupled Model Intercomparison Project. The authors examined simulations from 15 GCMs that included both natural and anthropogenic forcing and simulations from 7 GCMs that included only natural forcing. The decline in observed NH SCE could be largely explained by the combined natural and anthropogenic forcing but not by natural forcing alone. However, the 15 GCMs, taken as a whole, underpredicted the combined forcing response by a factor of 2. How much of this underprediction was due to underrepresentation of the sensitivity to external forcing of the GCMs or to their underrepresentation of internal variability has yet to be determined.


2019 ◽  
Vol 20 (11) ◽  
pp. 2229-2252 ◽  
Author(s):  
Rachel R. McCrary ◽  
Linda O. Mearns

Abstract The NARCCAP RCM–GCM ensemble is used to explore the uncertainty in midcentury projections of snow over North America that arise when multiple RCMs are used to downscale multiple GCMs. Various snow metrics are examined, including snow water equivalent (SWE), snow cover extent (SCE), snow cover duration (SCD), and the timing of the snow season. Simulated biases in baseline snow characteristics are found to be sensitive to the choice of RCM and less influenced by the driving GCM. By midcentury, domain-averaged SCE and SWE are projected to decrease in all months of the year. However, using multiple RCMs to downscale multiple GCMs inflates the uncertainty in future projections of both SCE and SWE, with projections of SWE being more uncertain. Spatially, the RCMs show winter SWE decreasing over most of North America, except north of the Arctic rim, where SWE is projected to increase. SCD is also projected to decrease with both a later start and earlier termination of the snow season. For all metrics considered, the magnitude of the climate change signal varies across the RCMs. The ensemble spread is large over the western United States, where the RCMs disagree on the sign of the change in SWE in some high-elevation regions. Future projections of snow (both magnitude and spatial patterns) are more similar between simulations performed with the same RCM than the simulations driven by the same GCM. This implies that climate change uncertainty is not sufficiently explored in experiments performed with a single RCM driven by multiple GCMs.


2020 ◽  
Vol 55 (11-12) ◽  
pp. 2993-3016
Author(s):  
María Santolaria-Otín ◽  
Olga Zolina

Abstract Spatial and temporal patterns of snow cover extent (SCE) and snow water equivalent (SWE) over the terrestrial Arctic are analyzed based on multiple observational datasets and an ensemble of CMIP5 models during 1979–2005. For evaluation of historical simulations of the Coupled Model Intercomparison Project (CMIP5) ensemble, we used two reanalysis products, one satellite-observed product and an ensemble of different datasets. The CMIP5 models tend to significantly underestimate the observed SCE in spring but are in better agreement with observations in autumn; overall, the observed annual SCE cycle is well captured by the CMIP5 ensemble. In contrast, for SWE, the annual cycle is significantly biased, especially over North America, where some models retain snow even in summer, in disagreement with observations. The snow margin position (SMP) in the CMIP5 historical simulations is in better agreement with observations in spring than in autumn, when close agreement across the CMIP5 models is only found in central Siberia. Historical experiments from most CMIP5 models show negative pan-Arctic trends in SCE and SWE. These trends are, however, considerably weaker (and less statistically significant) than those reported from observations. Most CMIP5 models can more accurately capture the trend pattern of SCE than that of SWE, which shows quantitative and qualitative differences with the observed trends over Eurasia. Our results demonstrate the importance of using multiple data sources for the evaluation of snow characteristics in climate models. Further developments should focus on the improvement of both dataset quality and snow representation in climate models, especially ESM-SnowMIP.


2020 ◽  
Author(s):  
Kari Luojus ◽  
Matias Takala ◽  
Jouni Pulliainen ◽  
Juha Lemmetyinen ◽  
Mikko Moisander ◽  
...  

<p>Reliable information on snow cover across the Northern Hemisphere and Arctic and sub-Arctic regions is needed for climate monitoring, for understanding the Arctic climate system, and for the evaluation of the role of snow cover and its feedback in climate models. In addition to being of significant interest for climatological investigations, reliable information on snow cover is of high value for the purpose of hydrological forecasting and numerical weather prediction. Terrestrial snow covers up to 50 million km² of the Northern Hemisphere in winter and is characterized by high spatial and temporal variability making satellite observations the only means for providing timely and complete observations of the global snow cover. The ESA Snow CCI project was initiated in 2018 to improve methodologies for snow cover extent (SE) and snow water equivalent (SWE) retrieval [1] using satellite data and construct long term data records of terrestrial snow cover for climate research purposes.</p><p>The first new long term SWE data record from the ESA Snow CCI project, spanning 1979 to 2018 has been constructed and assessed in terms of retrieval performance, homogeneity and temporal stability. The initial results show that the new SWE dataset is more robust, more accurate and more consistent over the 40-year time series, compared to the earlier ESA GlobSnow SWE v1.0 and v2.0 data records [1].</p><p>The improved SWE retrieval methodology incorporates a new emission model (within the retrieval scheme), an improved synoptic weather station snow depth data record (applied to support SWE retrieval), extension of the SWE retrieval to cover the whole Northern Hemisphere.</p><p>The new Snow CCI SWE data record has been used to assess changes in the long term hemispherical snow conditions and climatological trends in Northern Hemisphere, Eurasia and North America. The general finding is that the peak hemispherical snow mass during the satellite era has not yet decreased significantly but has remained relatively stable, with changes to lower and higher SWE conditions in different geographical regions.</p><p> </p><p>References:</p><p>[1] Takala, M, K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J.-P. Kärnä, J. Koskinen, B. Bojkov. 2011. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment, 115, 12, 3517-3529, doi:10.1016/j.rse.2011.08.014.</p>


1997 ◽  
Vol 25 ◽  
pp. 241-245 ◽  
Author(s):  
David A. Robinson

Accurate information concerning snow cover, and associated impacts of snow on regional surface albedo, needs to be available for empirical studies and for the validation of climate models. Here, a new integrated dataset for Northern Hemisphere lands is discussed, including files of visible and microwave satellite-derived snow estimates and in situ station data. These files will be used to examine snow extent, snow depth and surface albedo over five-day intervals, and have been generated using geographic-information system techniques. Visible and station observations extend from 1972 to present, and microwave estimates from 1979 to present, The 1×1° gridded files permit the strengths and weaknesses of the individual data sources to be identified and quantified. Also included is a hemispheric time series of snow extern derived from the visible satellite file. Of note are the two pronounced regimes of Northern Hemisphere extent during the past several decades. Between 1972 and 1985, 12 month running means of snow extent fluctuated around a mean of 25.9 × 10 km2. An abrupt transition occurred in 1986 and 1987, and since then mean annual extern has been 24.2 × 106km2. Recent decreases are found from late winter to early summer.


2009 ◽  
Vol 22 (8) ◽  
pp. 2124-2145 ◽  
Author(s):  
Ross D. Brown ◽  
Philip W. Mote

Abstract A snowpack model sensitivity study, observed changes of snow cover in the NOAA satellite dataset, and snow cover simulations from the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset are used to provide new insights into the climate response of Northern Hemisphere (NH) snow cover. Under conditions of warming and increasing precipitation that characterizes both observed and projected climate change over much of the NH land area with seasonal snow cover, the sensitivity analysis indicated snow cover duration (SCD) was the snow cover variable exhibiting the strongest climate sensitivity, with sensitivity varying with climate regime and elevation. The highest snow cover–climate sensitivity was found in maritime climates with extensive winter snowfall—for example, the coastal mountains of western North America (NA). Analysis of trends in snow cover duration during the 1966–2007 period of NOAA data showed the largest decreases were concentrated in a zone where seasonal mean air temperatures were in the range of −5° to +5°C that extended around the midlatitudinal coastal margins of the continents. These findings were echoed by the climate models that showed earlier and more widespread decreases in SCD than annual maximum snow water equivalent (SWEmax), with the zone of earliest significant decrease located over the maritime margins of NA and western Europe. The lowest SCD–climate sensitivity was observed in continental interior climates with relatively cold and dry winters, where precipitation plays a greater role in snow cover variability. The sensitivity analysis suggested a potentially complex elevation response of SCD and SWEmax to increasing temperature and precipitation in mountain regions as a result of nonlinear interactions between the duration of the snow season and snow accumulation rates.


Sign in / Sign up

Export Citation Format

Share Document