scholarly journals The Critical Role of Non-Normality in Partitioning Tropical and Extratropical Contributions to PNA Growth

2020 ◽  
Vol 33 (14) ◽  
pp. 6273-6295 ◽  
Author(s):  
Stephanie A. Henderson ◽  
Daniel J. Vimont ◽  
Matthew Newman

AbstractThe Pacific–North American (PNA) teleconnection pattern has been linked both to tropical phenomena, including the Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO), and to internal extratropical processes, including interactions with the zonally varying basic state and synoptic eddies. Many questions remain, however, concerning how these various relationships act, both separately and together, to yield observed PNA variability. Using linear inverse modeling (LIM), this study finds that the development and amplification of PNA anomalies largely results from the interference of modes strongly coupled to sea surface temperatures (SST), such as ENSO, and modes internal to the atmosphere, including the MJO. These SST-coupled and “internal atmospheric” modes form subspaces that are not orthogonal, and PNA growth is shown to occur via non-normal interactions. An internal atmospheric space LIM is developed to examine growth beyond this interference by removing the SST-coupled modes, effectively removing ENSO and retaining MJO variability. Optimal PNA growth in the internal atmospheric space LIM is driven by MJO heating, particularly over the Indian Ocean, and a retrograding northeast Pacific streamfunction anomaly. Additionally, the individual contributions of tropical heating and the extratropical circulation on PNA growth are investigated. The non-normal PNA growth is an important result, demonstrating the difficulty in partitioning PNA variance into contributions from different phenomena. This cautionary result is likely applicable to many geophysical phenomena and should be considered in attribution studies.

Author(s):  
Woosok Moon ◽  
John S. Wettlaufer

We examine how coupling functions in the theory of dynamical systems provide a quantitative window into climate dynamics. Previously, we have shown that a one-dimensional periodic non-autonomous stochastic dynamical system can simulate the monthly statistics of surface air temperature data. Here, we expand this approach to two-dimensional dynamical systems to include interactions between two sub-systems of the climate. The relevant coupling functions are constructed from the covariance of the data from the two sub-systems. We demonstrate the method on two tropical climate indices, the El-Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), to interpret the mutual interactions between these two air–sea interaction phenomena in the Pacific and Indian Oceans. The coupling function reveals that the ENSO mainly controls the seasonal variability of the IOD during its mature phase. This demonstrates the plausibility of constructing a network model for the seasonal variability of climate systems based on such coupling functions. This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences’.


Author(s):  
Emily Black

Knowledge of the processes that control East African rainfall is essential for the development of seasonal forecasting systems, which may mitigate the effects of flood and drought. This study uses observational data to unravel the relationship between the Indian Ocean Dipole (IOD), the El Niño Southern Oscillation (ENSO) and rainy autumns in East Africa. Analysis of sea–surface temperature data shows that strong East African rainfall is associated with warming in the Pacific and Western Indian Oceans and cooling in the Eastern Indian Ocean. The resemblance of this pattern to that which develops during IOD events implies a link between the IOD and strong East African rainfall. Further investigation suggests that the observed teleconnection between East African rainfall and ENSO is a manifestation of a link between ENSO and the IOD.


2020 ◽  
Author(s):  
Pascal Haegeli ◽  
Bret Shandro ◽  
Patrick Mair

Abstract. Numerous large-scale atmosphere-ocean oscillations including the El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Pacific North American Teleconnection Pattern (PNA) and the Artic Oscillation (AO) are known to substantially affect winter weather patterns in western Canada. Several studies have examined the effect of these oscillations on avalanche hazard using long-term avalanche activity records from highway avalanche safety programs. While these studies offer valuable insights, they do not offer a comprehensive perspective on the influence of these oscillations because the underlying data only represent the conditions at a few point locations in western Canada where avalanches are tightly managed. We present a new approach for gaining insight into the relationship between atmosphere-ocean oscillations and avalanche hazard in western Canada that uses avalanche problem information published in public avalanche bulletins during the winters of 2010 to 2019. For each avalanche problem type, we calculate seasonal prevalence values for each forecast area, elevation band and season, which are then included in a series of beta mixed-effects regression models to explore both the overall and regional effects of the Pacific-centered oscillations (PO; including ENSO, PDO, PNA) and AO on the nature of avalanche hazard in the study area. Even though our study period is short, we find significant negative effects of PO on the prevalence of Storm slab avalanche problems, Wind slab avalanche problems, and Dry loose avalanche problems, which agree reasonably well with the known impacts of PO on winter weather in western Canada. The analysis also reveals a positive relationship between AO and the prevalence of Deep persistent slab avalanche problems particularly in the Rocky Mountains. In addition, we also find several smaller-scale patterns that highlight that the avalanche hazard response to these oscillations varies regionally. Our study shows that the forecaster judgment included in the avalanche problem assessments adds considerable value for these types of climate analyses. Since the predictability of the most important atmosphere-ocean oscillations is continuously improving, a better understanding of their effect on avalanche hazard can contribute to the development of informative seasonal avalanche forecasts and a better understanding of the effect of climate change on avalanche hazard.


2019 ◽  
Vol 69 (1) ◽  
pp. 273
Author(s):  
Blair Trewin ◽  
Catherine Ganter

This summary looks at the southern hemisphere and equatorial climate patterns for spring 2016, with particular attention given to the Australasian and equatorial regions of the Pacific and Indian Ocean basins. Spring 2016 was marked by the later part of a strong negative phase of the Indian Ocean Dipole, alongside cool neutral El Niño–Southern Oscillation conditions. September was exceptionally wet over much of Australia, contributing to a wet spring with near-average temperatures. The spring was one of the warmest on record over the southern hemisphere as a whole, with Antarctic Sea ice extent dropping to record low levels for the season.


2013 ◽  
Vol 26 (22) ◽  
pp. 8850-8867 ◽  
Author(s):  
Andrew Hoell ◽  
Mathew Barlow ◽  
Roop Saini

Abstract Deep tropical convection over the Indian Ocean leads to intense diabatic heating, a main driver of the climate system. The Northern Hemisphere circulation and precipitation associated with intraseasonal and seasonal-to-interannual components of the leading pattern of Indian Ocean convection are investigated for November–April 1979–2008. The leading pattern of Indian Ocean convection is separated into intraseasonal and seasonal-to-interannual components by filtering an index of outgoing longwave radiation at 33–105 days and greater than 105 days, yielding Madden–Julian oscillation (MJO)- and El Niño–Southern Oscillation (ENSO)-influenced patterns, respectively. Observations and barotropic Rossby wave ray tracing experiments suggest that Indian Ocean convection can influence the ENSO-related hemispheric teleconnection pattern in addition to the regional Asian teleconnection. Equivalent barotropic circulation anomalies throughout the Northern Hemisphere subtropics are associated with both seasonal-to-interannual Indian Ocean convection and ENSO. The hemispheric teleconnection associated with seasonal-to-interannual Indian Ocean convection is investigated with ray tracing, which suggests that forcing over the Indian Ocean can propagate eastward across the hemisphere and back to Asia. The relationship between the seasonal-to-interannual component of Indian Ocean convection and ENSO is investigated in terms of a gradient in sea surface temperatures (SST) over the equatorial western Pacific Ocean. When the western Pacific SST gradient is strong during ENSO, strong Maritime Continent precipitation extends further westward into the Indian Ocean, which is accompanied by enhanced tropospheric Asian circulation, similar to the seasonal-to-interannual component of Indian Ocean convection. Analysis of the three strongest interannual convection seasons shows that the strong Indian Ocean pattern of ENSO can dominate individual seasons.


2013 ◽  
Vol 26 (4) ◽  
pp. 1268-1285 ◽  
Author(s):  
Arun Kumar ◽  
Hui Wang ◽  
Wanqiu Wang ◽  
Yan Xue ◽  
Zeng-Zhen Hu

Abstract Based on analysis of a coupled model simulations with and without variability associated with the El Niño–Southern Oscillation (ENSO), it is demonstrated that knowing the current value of the ocean surface temperature–based index of the Pacific decadal oscillation (the OPDO index), and the corresponding atmospheric teleconnection pattern, does not add a predictive value for atmospheric anomalies in subsequent months. This is because although the OPDO index evolves on a slow time scale, it does not constrain the atmospheric variability in subsequent months, which retains its character of white noise stochastic variability and remains largely unpredictable. Further, the OPDO adds little to the atmospheric predictability originating from the tropical Pacific during ENSO years.


2015 ◽  
Vol 28 (13) ◽  
pp. 5017-5029 ◽  
Author(s):  
Jules B. Kajtar ◽  
Agus Santoso ◽  
Matthew H. England ◽  
Wenju Cai

Abstract The Pacific and Indian Oceans are connected by an oceanic passage called the Indonesian Throughflow (ITF). In this setting, modes of climate variability over the two oceanic basins interact. El Niño–Southern Oscillation (ENSO) events generate sea surface temperature anomalies (SSTAs) over the Indian Ocean that, in turn, influence ENSO evolution. This raises the question as to whether Indo-Pacific feedback interactions would still occur in a climate system without an Indonesian Throughflow. This issue is investigated here for the first time using a coupled climate model with a blocked Indonesian gateway and a series of partially decoupled experiments in which air–sea interactions over each ocean basin are in turn suppressed. Closing the Indonesian Throughflow significantly alters the mean climate state over the Pacific and Indian Oceans. The Pacific Ocean retains an ENSO-like variability, but it is shifted eastward. In contrast, the Indian Ocean dipole and the Indian Ocean basinwide mode both collapse into a single dominant and drastically transformed mode. While the relationship between ENSO and the altered Indian Ocean mode is weaker than that when the ITF is open, the decoupled experiments reveal a damping effect exerted between the two modes. Despite the weaker Indian Ocean SSTAs and the increased distance between these and the core of ENSO SSTAs, the interbasin interactions remain. This suggests that the atmospheric bridge is a robust element of the Indo-Pacific climate system, linking the Indian and Pacific Oceans even in the absence of an Indonesian Throughflow.


2013 ◽  
Vol 26 (16) ◽  
pp. 5965-5980 ◽  
Author(s):  
Joke F. Lübbecke ◽  
Michael J. McPhaden

Abstract El Niño–Southern Oscillation (ENSO) in the Pacific and the analogous Atlantic Niño mode are generated by processes involving coupled ocean–atmosphere interactions known as the Bjerknes feedback. It has been argued that the Atlantic Niño mode is more strongly damped than ENSO, which is presumed to be closer to neutrally stable. In this study the stability of ENSO and the Atlantic Niño mode is compared via an analysis of the Bjerknes stability index. This index is based on recharge oscillator theory and can be interpreted as the growth rate for coupled modes of ocean–atmosphere variability. Using observational data, an ocean reanalysis product, and output from an ocean general circulation model, the individual terms of the Bjerknes index are calculated for the first time for the Atlantic and then compared to results for the Pacific. Positive thermocline feedbacks in response to wind stress forcing favor anomaly growth in both basins, but they are twice as large in the Pacific compared to the Atlantic. Thermocline feedback is related to the fetch of the zonal winds, which is much greater in the equatorial Pacific than in the equatorial Atlantic due to larger basin size. Negative feedbacks are dominated by thermal damping of sea surface temperature anomalies in both basins. Overall, it is found that both ENSO and the Atlantic Niño mode are damped oscillators, but the Atlantic is more strongly damped than the Pacific primarily because of the weaker thermocline feedback.


2021 ◽  
Vol 15 (3) ◽  
pp. 1567-1586
Author(s):  
Pascal Haegeli ◽  
Bret Shandro ◽  
Patrick Mair

Abstract. Numerous large-scale atmosphere–ocean oscillations including the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Pacific North American Teleconnection Pattern (PNA), and the Arctic Oscillation (AO) are known to substantially affect winter weather patterns in western Canada. Several studies have examined the effect of these oscillations on avalanche hazard using long-term avalanche activity records from highway avalanche safety programmes. We present a new approach for gaining additional insight into these relationships that uses avalanche problem information published in public avalanche bulletins during the winters of 2010 to 2019. For each avalanche problem type, we calculate seasonal prevalence values for each forecast area, elevation band, and season, which are then included in a series of beta mixed-effects regression models to explore both the overall and regional effects of the Pacific-centered oscillations (POs; including ENSO, PDO, and PNA) and AO on the nature of avalanche hazard in the study area. We find significant negative effects of PO on the prevalence of storm slab avalanche problems, wind slab avalanche problems, and dry loose avalanche problems, which agree reasonably well with the known impacts of PO on winter weather in western Canada. The analysis also reveals a positive relationship between AO and the prevalence of deep persistent slab avalanche problems, particularly in the Rocky Mountains. In addition, we find several smaller-scale patterns that highlight that the avalanche hazard response to these oscillations varies regionally. Even though our study period is short, our study shows that the forecaster judgement included in avalanche problem assessments can add considerable value for these types of analyses. Since the predictability of the most important atmosphere–ocean oscillations is continuously improving, a better understanding of their effect on avalanche hazard can contribute to the development of informative seasonal avalanche forecasts in a relatively simple way.


2018 ◽  
Vol 115 (5) ◽  
pp. 891-896 ◽  
Author(s):  
Wei Zhang ◽  
Gabriele Villarini

Atmospheric rivers (ARs) exert major socioeconomic repercussions along the US West Coast by inducing heavy rainfall, flooding, strong winds, and storm surge. Despite the significant societal and economic repercussions of these storms, our understanding of the physical drivers responsible for their interannual variability is limited, with different climate modes identified as possible mechanisms. Here we show that the Pacific-Japan (PJ) teleconnections/patterns and the East Asian subtropical jet (EASJ) exhibit a strong linkage with the total frequency of ARs making landfall over the western United States, much stronger than the other potential climate modes previously considered. While our findings indicate that the PJ pattern and EASJ are the most relevant climate modes driving the overall AR activity, we also uncover heterogeneities in AR tracks. Specifically, we show that not all ARs making landfall along the West Coast come from a single population, but rather that it is possible to stratify these storms into three clusters. While the PJ pattern and EASJ are major drivers of AR activity for two clusters, the cluster that primarily affects the US Southwest is largely driven by other climate modes [El Niño Southern Oscillation (ENSO), the Atlantic meridional mode (AMM), the Pacific-North America (PNA) teleconnection pattern, and the North Pacific Gyre Oscillation (NPGO)]. Therefore, important regional differences exist and this information can substantially enhance our ability to predict and prepare for these storms and their impacts.


Sign in / Sign up

Export Citation Format

Share Document