scholarly journals Impacts of Ice-Shelf Melting on Water-Mass Transformation in the Southern Ocean from E3SM Simulations

2020 ◽  
Vol 33 (13) ◽  
pp. 5787-5807
Author(s):  
Hyein Jeong ◽  
Xylar S. Asay-Davis ◽  
Adrian K. Turner ◽  
Darin S. Comeau ◽  
Stephen F. Price ◽  
...  

AbstractThe Southern Ocean overturning circulation is driven by winds, heat fluxes, and freshwater sources. Among these sources of freshwater, Antarctic sea ice formation and melting play the dominant role. Even though ice-shelf melt is relatively small in magnitude, it is located close to regions of convection, where it may influence dense water formation. Here, we explore the impacts of ice-shelf melting on Southern Ocean water-mass transformation (WMT) using simulations from the Energy Exascale Earth System Model (E3SM) both with and without the explicit representation of melt fluxes from beneath Antarctic ice shelves. We find that ice-shelf melting enhances transformation of Upper Circumpolar Deep Water, converting it to lower density values. While the overall differences in Southern Ocean WMT between the two simulations are moderate, freshwater fluxes produced by ice-shelf melting have a further, indirect impact on the Southern Ocean overturning circulation through their interaction with sea ice formation and melting, which also cause considerable upwelling. We further find that surface freshening and cooling by ice-shelf melting cause increased Antarctic sea ice production and stronger density stratification near the Antarctic coast. In addition, ice-shelf melting causes decreasing air temperature, which may be directly related to sea ice expansion. The increased stratification reduces vertical heat transport from the deeper ocean. Although the addition of ice-shelf melting processes leads to no significant changes in Southern Ocean WMT, the simulations and analysis conducted here point to a relationship between increased Antarctic ice-shelf melting and the increased role of sea ice in Southern Ocean overturning.

2021 ◽  
Author(s):  
Cara Nissen ◽  
Ralph Timmermann ◽  
Mario Hoppema ◽  
Judith Hauck

<p>Deep and bottom water formation regions have long been recognized to be efficient vectors for carbon transfer to depth, leading to carbon sequestration on time scales of centuries or more. Precursors of Antarctic Bottom Water (AABW) are formed on the Weddell Sea continental shelf as a consequence of buoyancy loss of surface waters at the ice-ocean or atmosphere-ocean interface, which suggests that any change in water mass transformation rates in this area affects global carbon cycling and hence climate. Many of the models previously used to assess AABW formation in present and future climates contained only crude representations of ocean-ice shelf interaction. Numerical simulations often featured spurious deep convection in the open ocean, and changes in carbon sequestration have not yet been assessed at all. Here, we present results from the global model FESOM-REcoM, which was run on a mesh with elevated grid resolution in the Weddell Sea and which includes an explicit representation of sea ice and ice shelves. Forcing this model with ssp585 scenario output from the AWI Climate Model, we assess changes over the 21<sup>st</sup> century in the formation and northward export of dense waters and the associated carbon fluxes within and out of the Weddell Sea. We find that the northward transport of dense deep waters (σ<sub>2</sub>>37.2 kg m<sup>-3</sup> below 2000 m) across the SR4 transect, which connects the tip of the Antarctic Peninsula with the eastern Weddell Sea, declines from 4 Sv to 2.9 Sv by the year 2100. Concurrently, despite the simulated continuous increase in surface ocean CO<sub>2</sub> uptake in the Weddell Sea over the 21<sup>st</sup> century, the carbon transported northward with dense deep waters declines from 3.5 Pg C yr<sup>-1</sup> to 2.5 Pg C yr<sup>-1</sup>, demonstrating the dominant role of dense water formation rates for carbon sequestration. Using the water mass transformation framework, we find that south of SR4, the formation of downwelling dense waters declines from 3.5 Sv in the 1990s to 1.6 Sv in the 2090s, a direct result of the 18% lower sea-ice formation in the area, the increased presence of modified Warm Deep Water on the continental shelf, and 50% higher ice shelf basal melt rates. Given that the reduced formation of downwelling water masses additionally occurs at lighter densities in FESOM-REcoM in the 2090s, this will directly impact the depth at which any additional oceanic carbon uptake is stored, with consequences for long-term carbon sequestration.</p>


2019 ◽  
Vol 32 (9) ◽  
pp. 2537-2551 ◽  
Author(s):  
Louis-Philippe Nadeau ◽  
Raffaele Ferrari ◽  
Malte F. Jansen

Abstract Changes in deep-ocean circulation and stratification have been argued to contribute to climatic shifts between glacial and interglacial climates by affecting the atmospheric carbon dioxide concentrations. It has been recently proposed that such changes are associated with variations in Antarctic sea ice through two possible mechanisms: an increased latitudinal extent of Antarctic sea ice and an increased rate of Antarctic sea ice formation. Both mechanisms lead to an upward shift of the Atlantic meridional overturning circulation (AMOC) above depths where diapycnal mixing is strong (above 2000 m), thus decoupling the AMOC from the abyssal overturning circulation. Here, these two hypotheses are tested using a series of idealized two-basin ocean simulations. To investigate independently the effect of an increased latitudinal ice extent from the effect of an increased ice formation rate, sea ice is parameterized as a latitude strip over which the buoyancy flux is negative. The results suggest that both mechanisms can effectively decouple the two cells of the meridional overturning circulation (MOC), and that their effects are additive. To illustrate the role of Antarctic sea ice in decoupling the AMOC and the abyssal overturning cell, the age of deep-water masses is estimated. An increase in both the sea ice extent and its formation rate yields a dramatic “aging” of deep-water masses if the sea ice is thick and acts as a lid, suppressing air–sea fluxes. The key role of vertical mixing is highlighted by comparing results using different profiles of vertical diffusivity. The implications of an increase in water mass ages for storing carbon in the deep ocean are discussed.


2016 ◽  
Vol 29 (7) ◽  
pp. 2597-2619 ◽  
Author(s):  
Emily R. Newsom ◽  
Cecilia M. Bitz ◽  
Frank O. Bryan ◽  
Ryan Abernathey ◽  
Peter R. Gent

Abstract The dynamics of the lower cell of the meridional overturning circulation (MOC) in the Southern Ocean are compared in two versions of a global climate model: one with high-resolution (0.1°) ocean and sea ice and the other a lower-resolution (1.0°) counterpart. In the high-resolution version, the lower cell circulation is stronger and extends farther northward into the abyssal ocean. Using the water-mass-transformation framework, it is shown that the differences in the lower cell circulation between resolutions are explained by greater rates of surface water-mass transformation within the higher-resolution Antarctic sea ice pack and by differences in diapycnal-mixing-induced transformation in the abyssal ocean. While both surface and interior transformation processes work in tandem to sustain the lower cell in the control climate, the circulation is far more sensitive to changes in surface transformation in response to atmospheric warming from raising carbon dioxide levels. The substantial reduction in overturning is primarily attributed to reduced surface heat loss. At high resolution, the circulation slows more dramatically, with an anomaly that reaches deeper into the abyssal ocean and alters the distribution of Southern Ocean warming. The resolution dependence of associated heat uptake is particularly pronounced in the abyssal ocean (below 4000 m), where the higher-resolution version of the model warms 4.5 times more than its lower-resolution counterpart.


2020 ◽  
Author(s):  
Charles Pelletier ◽  
Lars Zipf ◽  
Konstanze Haubner ◽  
Hugues Goosse ◽  
Frank Pattyn ◽  
...  

<p>From 2016 on, observed tendencies of Southern Ocean sea surface temperatures and Antarctic sea ice extent (SIE) have shifted from cooling down (with SIE increase) to warming up (SIE decrease). This change of Southern Ocean surface thermal properties has been sustained since, which indicates that it is not solely due to the interannual variability of the atmosphere, but also to modifications in the ocean itself. Among other physical phenomena, the acceleration of continental ice shelf melt, through its subsequent impact on the Southern Ocean stratification, has been proposed as one of the potential meaningful drivers of the sea ice changes. Reciprocally, recent studies suggest that besides atmosphere forcings, the upper ocean thermal content bears significant impact on ice shelf melt rates and dynamics. Here we present a new circumpolar coupled Southern Ocean – Antarctic ice sheet configuration aiming at investigating the impact of this ocean – continental ice feedback, developed within the framework of the PARAMOUR project. Our setting relies on the ocean and sea ice model NEMO3.6-LIM3 sending ice shelf melt rates to the Antarctic ice sheet model f.ETISh v1.5, who in turn responds to it and provides updated ice shelf cavity geometry. Both technical aspects and first coupled results are presented.</p>


Author(s):  
Maryam R. Al-Shehhi ◽  
Hajoon Song ◽  
Jeffery Scott ◽  
John Marshall

AbstractWe diagnose the ocean’s residual overturning circulation of the Arabian Gulf in a high-resolution model and interpret it in terms ofwater-mass transformation processes mediated by air-sea buoyancy fluxes and interior mixing. We attempt to rationalise the complex three-dimensional flow in terms of the superposition of a zonal (roughly along-axis) and meridional (transverse) overturning pattern. Rates of overturning and the seasonal cycle of air-sea fluxes sustaining them are quantified and ranked in order of importance. Air-sea fluxes dominate the budget so that, at zero order, the magnitude and sense of the overturning circulation can be inferred from air-sea fluxes, with interior mixing playing a lesser role. We find that wintertime latent heat fluxes dominate the water-mass transformation rate in the interior waters of the Gulf leading to a diapycnal volume flux directed toward higher densities. In the zonal overturning cell, fluid is drawn in from the Sea of Oman through the Strait of Hormuz, transformed and exits the Strait near the southern and bottom boundaries. Along the southern margin of the Gulf, evaporation plays an important role in the meridional overturning pattern inducing sinking there.


2016 ◽  
Vol 29 (5) ◽  
pp. 1655-1672 ◽  
Author(s):  
Andrew G. Pauling ◽  
Cecilia M. Bitz ◽  
Inga J. Smith ◽  
Patricia J. Langhorne

ABSTRACT The possibility that recent Antarctic sea ice expansion resulted from an increase in freshwater reaching the Southern Ocean is investigated here. The freshwater flux from ice sheet and ice shelf mass imbalance is largely missing in models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, on average, precipitation minus evaporation (P − E) reaching the Southern Ocean has increased in CMIP5 models to a present value that is about greater than preindustrial times and 5–22 times larger than estimates of the mass imbalance of Antarctic ice sheets and shelves (119–544 ). Two sets of experiments were conducted from 1980 to 2013 in CESM1(CAM5), one of the CMIP5 models, artificially distributing freshwater either at the ocean surface to mimic iceberg melt or at the ice shelf fronts at depth. An anomalous reduction in vertical advection of heat into the surface mixed layer resulted in sea surface cooling at high southern latitudes and an associated increase in sea ice area. Enhancing the freshwater input by an amount within the range of estimates of the Antarctic mass imbalance did not have any significant effect on either sea ice area magnitude or trend. Freshwater enhancement of raised the total sea ice area by 1 × 106 km2, yet this and even an enhancement of was insufficient to offset the sea ice decline due to anthropogenic forcing for any period of 20 years or longer. Further, the sea ice response was found to be insensitive to the depth of freshwater injection.


2016 ◽  
Vol 9 (8) ◽  
pp. 596-601 ◽  
Author(s):  
Ryan P. Abernathey ◽  
Ivana Cerovecki ◽  
Paul R. Holland ◽  
Emily Newsom ◽  
Matt Mazloff ◽  
...  

2018 ◽  
Vol 11 (4) ◽  
pp. 1257-1292 ◽  
Author(s):  
Kaitlin A. Naughten ◽  
Katrin J. Meissner ◽  
Benjamin K. Galton-Fenzi ◽  
Matthew H. England ◽  
Ralph Timmermann ◽  
...  

Abstract. An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of warm water from offshore.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
G. W. K. Moore ◽  
K. Våge ◽  
I. A. Renfrew ◽  
R. S. Pickart

AbstractWater mass transformation in the Nordic and Barents Seas, triggered by air-sea heat fluxes, is an integral component of the Atlantic Meridional Overturning Circulation (AMOC). These regions are undergoing rapid warming, associated with a retreat in ice cover. Here we present an analysis covering 1950−2020 of the spatiotemporal variability of the air-sea heat fluxes along the region’s boundary currents, where water mass transformation impacts are large. We find there is an increase in the air-sea heat fluxes along these currents that is a function of the currents’ orientation relative to the axis of sea-ice change suggesting enhanced water mass transformation is occurring. Previous work has shown a reduction in heat fluxes in the interior of the Nordic Seas. As a result, a reorganization seems to be underway in where water mass transformation occurs, that needs to be considered when ascertaining how the AMOC will respond to a warming climate.


Sign in / Sign up

Export Citation Format

Share Document