scholarly journals The role of large-scale moistening by adiabatic lifting in the Madden-Julian Oscillation convective onset

2021 ◽  
pp. 1-49
Author(s):  
Chelsea E. Snide ◽  
Ángel F. Adames ◽  
Scott W. Powell ◽  
Víctor C. Mayta

AbstractThe initiation of the Madden-Julian Oscillation over the Indian Ocean is examined through the use of a moisture budget that applies a version of the weak temperature gradient (WTG) approximation that does not neglect dry adiabatic vertical motions. Examination of this budget in ERA-Interim reveals that horizontal moisture advection and vertical advection by adiabatic lifting govern the moistening of the troposphere for both primary and successive MJO initiation events. For both types of initiation events, horizontal moisture advection peaks prior to the maximum moisture tendency, while adiabatic lifting peaks after the maximum moisture tendency. Once convection initiates, moisture is maintained by anomalous radiative and adiabatic lifting. Adiabatic lifting during successive MJO initiation is attributed to the return of the circumnavigating circulation from a previous MJO event, while in primary events the planetary-scale circulation appears to originate over South America. Examination of the same budget with data from the DYNAMO northern sounding array shows that adiabatic lifting contributes significantly to MJO maintenance, with a contribution that is comparable to that of surface heat fluxes. However, results from the DYNAMO data disagree with those from ERA-Interim over the importance of adiabatic lifting to the moistening of the troposphere prior to the onset of convection. In spite of these differences, the results from the two data sets show that small departures from WTG balance in the form of dry adiabatic motions cannot be neglected when considering MJO convective onset.

2018 ◽  
Vol 31 (24) ◽  
pp. 10105-10121 ◽  
Author(s):  
Yu Cheng ◽  
Lisa M. Beal ◽  
Ben P. Kirtman ◽  
Dian Putrasahan

We investigate the interannual variability of Agulhas leakage in an ocean-eddy-resolving coupled simulation and characterize its influence on regional climate. Many observational leakage estimates are based on the study of Agulhas rings, whereas recent model studies suggest that rings and eddies carry less than half of leakage transport. While leakage variability is dominated by eddies at seasonal time scales, the noneddy leakage transport is likely to be constrained by large-scale forcing at longer time scales. To investigate this, leakage transport is quantified using an offline Lagrangian particle tracking approach. We decompose the velocity field into eddying and large-scale fields and then recreate a number of total velocity fields by modifying the eddying component to assess the dependence of leakage variability on the eddies. We find that the resulting leakage time series show strong coherence at periods longer than 1000 days and that 50% of the variance at interannual time scales is linked to the smoothed, large-scale field. As shown previously in ocean models, we find Agulhas leakage variability to be related to a meridional shift and/or strengthening of the westerlies. High leakage periods are associated with east–west contrasting patterns of sea surface temperature, surface heat fluxes, and convective rainfall, with positive anomalies over the retroflection region and negative anomalies within the Indian Ocean to the east. High leakage periods are also related to reduced inland convective rainfall over southeastern Africa in austral summer.


2013 ◽  
Vol 141 (12) ◽  
pp. 4197-4210 ◽  
Author(s):  
Michael J. Ventrice ◽  
Matthew C. Wheeler ◽  
Harry H. Hendon ◽  
Carl J. Schreck ◽  
Chris D. Thorncroft ◽  
...  

Abstract A new Madden–Julian oscillation (MJO) index is developed from a combined empirical orthogonal function (EOF) analysis of meridionally averaged 200-hPa velocity potential (VP200), 200-hPa zonal wind (U200), and 850-hPa zonal wind (U850). Like the Wheeler–Hendon Real-time Multivariate MJO (RMM) index, which was developed in the same way except using outgoing longwave radiation (OLR) data instead of VP200, daily data are projected onto the leading pair of EOFs to produce the two-component index. This new index is called the velocity potential MJO (VPM) indices and its properties are quantitatively compared to RMM. Compared to the RMM index, the VPM index detects larger-amplitude MJO-associated signals during boreal summer. This includes a slightly stronger and more coherent modulation of Atlantic tropical cyclones. This result is attributed to the fact that velocity potential preferentially emphasizes the planetary-scale aspects of the divergent circulation, thereby spreading the convectively driven component of the MJO’s signal across the entire globe. VP200 thus deemphasizes the convective signal of the MJO over the Indian Ocean warm pool, where the OLR variability associated with the MJO is concentrated, and enhances the signal over the relatively drier longitudes of the equatorial Pacific and Atlantic. This work provides a useful framework for systematic analysis of the strengths and weaknesses of different MJO indices.


2020 ◽  
Author(s):  
Ajda Savarin ◽  
Shuyi Chen

<p>Large-scale convection associated with the Madden-Julian Oscillation (MJO) initiates over the Indian Ocean and propagates eastward across the Maritime Continent (MC) into the western Pacific. As an MJO enters the MC, it often weakens or completely dissipates due to complex interactions between the large-scale MJO and the MC landmass and its topography. This is referred to as the MC barrier effect, and it is responsible for the dissipation of 40-50% of observed MJO events. One of the main reasons for the MJO’s weakening and dissipation over the MC is the diurnal cycle (DC), one of the strongest modes of variability in the region. Due to the complex nature of the MJO and the MC’s complicated topography, the interaction between the DC and the MJO is not well understood.</p><p>In this study, we examine the MJO-induced variability of the DC of precipitation over the MC. We use gridded satellite precipitation products (TRMM 3B42 and GPM IMERG) to: (1) track the MJO convective envelope using the Large-scale Precipitation Tracking algorithm (LPT), (2) analyze the changes in the DC of precipitation over the MC relative to the passage of the MJO. We find that the presence of an MJO not only increases the amount of precipitation over the MC, but that the increase is more pronounced over water than over land. The results from observations are compared to those from two reanalysis datasets (ERA5, MERRA-2). The reanalysis datasets are then used to examine the dynamic and thermodynamic changes that drive the variability in the DC of precipitation relative to the MJO. In addition, we separate MJO events into two groups based on whether they cross the MC, and independently examine their influences on the evolution of the DC of precipitation.</p>


2020 ◽  
Author(s):  
Sönke Maus

<p>The permeability of sea ice is an important property with regard to the role of sea ice in the earth system. It controls fluid flow within sea ice, and thus processes like melt pond drainage, desalination and to some degree heat fluxes between the ocean and the atmosphere. It also impacts the role of sea ice in hosting sea ice algae and organisms, and the uptake and release of nutrients and pollutants from Arctic surface waters. However, as it is difficult to measure in the field, observations of sea ice permeability are sparse and vary, even for similar porosity, over orders of magnitude. Here I present progress on this topic in three directions. First, I present results from numerical simulations of the permeability of young sea ice based on 3-d X-ray microtomographic images (XRT). These results provide a relationship between permeability and brine porosity of young columnar sea ice for the porosity range 2 to 25 %. The simulations also show that this ice type is permeable and electrically conducting down to a porosity of 2 %, considerably lower than what has been proposed in previous work. Second, the XRT-based simulations are compared to predictions based on a novel crystal growth modelling approach, finding good agreement. Third, the permeability model provides a relationship between sea ice growth velocity and permeability. Based on this relationshiop interesting aspects of the growth of permeable sea ice can be deduced: The predictions consistently explain observations of the onset of convection from growing sea ice. They also allow for an evaluation of expected permeability changes for a thinning sea ice cover in a warmer climate. As the model is strictly valid for growing and cooling sea ice, the results are mostly relevant for sea ice desalination processes during winter. Modelling permeability of summer ice (and melt pond drainage) will require more observations of the pore space evolution in warming sea ice, for which the present results can be considered as a resonable starting point.</p>


2020 ◽  
Author(s):  
Felipe Lobos Roco ◽  
Oscar Hartogensis ◽  
Jordi Vila ◽  
Alberto de la Fuente ◽  
Francisco Suarez

<p>Evaporation is the main water outflow and a key component of the water and surface energy balance in the endorheic basins of the Atacama Desert. This is very localized to confined environments such as saline lakes, wetlands and crop fields. In these environments, the understanding of evaporation is challenging due to the interaction between the large-scale forcing and local scale turbulence over heterogeneous surfaces. Here, the advection of momentum, heat or moisture plays an important role in the enhancement of evaporation. To understand the evaporation dynamics over such environments, we performed a comprehensive 10-days experiment: the E-DATA (<strong>E</strong>vaporation caused by <strong>D</strong>ry <strong>A</strong>ir <strong>T</strong>ransport over the <strong>A</strong>tacama Desert), localized under extreme conditions in the Salar del Huasco saline lake (22,3°S - 68,8°W - 3790 m a.s.l.), Chile. The measurement strategy was based on spatially distributed high-resolution surface and airborne observations in combination with WRF (Weather Research Forecasting) modeling. The main findings of the experiment show that evaporation is mainly controlled by the lack of turbulence in the morning and by regional-scale forcing in the afternoon, which leads to a sudden increase in mechanical turbulence, therefore in the evaporation flux.  </p><p>This work compares two in-situ independent measurements of surface heat fluxes over the saline lake, by using an Eddy Covariance (EC) system and an Optical-Microwave Scintillometer (OMS). Our results show in general a good agreement between EC and OMS measurements of latent (L<sub>v</sub>E) and sensible (H) heat fluxes over the water surface (R<sup>2</sup>: 0,90-0,96). During the morning, slight differences are observed between the EC and OMS measurements. However, differences up to 200 W m<sup>-2</sup> are observed in the afternoon for L<sub>v</sub>E and up to 20 Wm<sup>-2</sup> for H. The first analysis shows that these differences given during the afternoon are likely attributed to Monin-Obukhov stability (MOST) functions, which need to be developed yet for open water surfaces. Moreover, differences in the footprint of both measurement systems together with dramatic wind changes between the morning and afternoon may play a role. Finally, inaccurate bandpass filtering of the raw scintillometer signal may be a factor in the differences between EC and OMS, where we are currently working to refine our results. Our findings highlight the advantages and disadvantages of each measurement method over an open water body and provide a discussion about its performance.    </p>


2020 ◽  
Vol 77 (9) ◽  
pp. 3139-3160
Author(s):  
Chieh-Jen Cheng ◽  
Chun-Chieh Wu

Abstract This study examines the role of surface heat fluxes, particularly in relation to the wind-induced surface heat exchange (WISHE) mechanism, in the rapid intensification (RI) of tropical cyclones (TCs). Sensitivity experiments with capped surface fluxes and thus reduced WISHE exhibit delayed RI and weaker peak intensity, while WISHE could affect the evolutions of TCs both before and after the onset of RI. Before RI, more WISHE leads to faster increase of equivalent potential temperature in the lower levels, resulting in more active and stronger convection. In addition, TCs in experiments with more WISHE reach a certain strength earlier, before the onset of RI. During the RI period, more surface heat fluxes could provide convective instability in the lower levels, and cause a consequent development in the convective activity. More efficient intensification in a TC is found with higher surface heat fluxes and larger inertial stability, leading to a stronger peak intensity, more significant and deeper warm core in TC center, and the axisymmetrization of convection in the higher levels. In both stages, different levels of WISHE alter the thermodynamic environment and convective-scale processes. In all, this study supports the crucial role of WISHE in affecting TC intensification rate for TCs with RI.


2012 ◽  
Vol 69 (9) ◽  
pp. 2749-2758 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang

Abstract The Madden–Julian oscillation (MJO) is a multiscale system. A skeleton model, developed by Majda and Stechmann, can capture some of planetary-scale aspects of observed features such as slow eastward propagation, nondispersive behavior, and quadrupole-vortex structure. However, the Majda–Stechmann model cannot explain the source of instability and the preferred planetary scale of the MJO. Since the MJO major convection region is leaded by its planetary boundary layer (PBL) moisture convergence, here a frictional skeleton model is built by implementing a slab PBL into the neutral skeleton model. As a skeleton model allowing the scale interaction, this model is only valid for large-scale waves. This study shows that the PBL frictional convergence provides a strong instability source for the long eastward modes, although it also destabilizes very short westward modes. For the long waves (wavenumber less than 5), the PBL Ekman pumping moistens the low troposphere to the east of the MJO convective envelope, and sets up favorable moist conditions to destabilize the MJO and favor only eastward modes. Sensitivity experiments show that a weak PBL friction will enhance the instability slightly. The sea surface temperature (SST) with a maximum at the equator also prefers the long eastward modes. These theoretical analysis results encourage further observations on the PBL regulation of mesosynoptic-scale motions, and exploration of the interaction between PBL and multiscale motions, associated with the MJO to improve the MJO simulation in general circulation models (GCMs).


2019 ◽  
Vol 76 (8) ◽  
pp. 2275-2294 ◽  
Author(s):  
Rachel C. Zelinsky ◽  
Chidong Zhang ◽  
Chuntao Liu

Abstract Understanding convective initiation of the Madden–Julian oscillation (MJO) remains an unmet challenge. MJO initiation has been perceived as a process starting from a convectively suppressed large-scale condition with gradual growth of shallow convection to congestus and to deep convective and stratiform systems that cover a large-scale area. During the DYNAMO field campaign over the Indian Ocean, MJO initiation was observed to start from an existing intertropical convergence zone (ITCZ) south of the equator. This raises a question of what possible role the ITCZ may play in convective initiation of the MJO. This study addresses this question through analysis of satellite observations of precipitation and a global reanalysis product. By setting several criteria, MJO and ITCZ events were objectively identified and grouped according to whether MJO initiation was immediately preceded by an ITCZ. The results demonstrate that an ITCZ is neither a necessary nor sufficient condition for convective initiation of the MJO. Nonetheless, evolution of the large-scale circulation, moisture, and convective characteristics during MJO initiation can be different with and without a preexisting ITCZ. Convective growth begins gradually before and during MJO initiation when there is a preexisting ITCZ whereas it is abrupt and slightly delayed without a preexisting ITCZ. Such differences are presumably related to the existing large-scale moist condition of the ITCZ. The results from this study suggest that there are multiple mechanisms for convective initiation of the MJO, which should be considered in theoretical understanding of the MJO.


2018 ◽  
Author(s):  
Maria Ines Susperreguy ◽  
Pamela Davis-Kean ◽  
Kathryn Duckworth ◽  
Meichu Chen

This study examines whether self-concept of ability in math and reading predicts later math and reading attainment across different levels of achievement. Data from three large-scale longitudinal data sets, the ALSPAC, NICHD-SECCYD, and PSID-CDS, were used to answer this question by employing quantile regression analyses. After controlling for demographic variables, child characteristics, and early ability, the findings indicate that self-concept of ability in math and reading predicts later achievement in each respective domain across all quantile levels of achievement. These results were replicated across the three data sets representing different populations and provide robust evidence for the role of self-concept of ability in understanding achievement from early childhood to adolescence across the spectrum of performance (low to high).


Sign in / Sign up

Export Citation Format

Share Document