Coupled Ocean–Atmosphere Interactions between the Madden–Julian Oscillation and Synoptic-Scale Variability over the Warm Pool

2005 ◽  
Vol 18 (12) ◽  
pp. 2004-2020 ◽  
Author(s):  
Crispian P. Batstone ◽  
Adrian J. Matthews ◽  
David P. Stevens

Abstract A principal component analysis of the combined fields of sea surface temperature (SST) and surface zonal and meridional wind reveals that the dominant mode of intraseasonal (30 to 70 day) covariability during northern winter in the tropical Eastern Hemisphere is that of the Madden–Julian oscillation (MJO). Regression calculations show that the submonthly (30-day high-pass filtered) surface wind variability is significantly modulated during the MJO. Regions of increased (decreased) submonthly surface wind variability propagate eastward, approximately in phase with the intraseasonal surface westerly (easterly) anomalies of the MJO. Because of the dependence of the surface latent heat flux on the magnitude of the total wind speed, this systematic modulation of the submonthly surface wind variability produces a significant component in the intraseasonal latent heat flux anomalies, which partially cancels the latent heat flux anomalies due to the slowly varying intraseasonal wind anomalies, particularly south of 10°S. A method is derived that demodulates the submonthly surface wind variability from the slowly varying intraseasonal wind anomalies. This method is applied to the wind forcing fields of a one-dimensional ocean model. The model response to this modified forcing produces larger intraseasonal SST anomalies than when the model is forced with the observed forcing over large areas of the southwest Pacific Ocean and southeast Indian Ocean during both phases of the MJO. This result has implications for accurate coupled modeling of the MJO. A similar calculation is applied to the surface shortwave flux, but intraseasonal modulation of submonthly surface shortwave flux variability does not appear to be important to the dynamics of the MJO.

Author(s):  
Yunwei Yan ◽  
Lei Zhang ◽  
Xiangzhou Song ◽  
Guihua Wang ◽  
Changlin Chen

AbstractDiurnal variation in surface latent heat flux (LHF) and the effects of diurnal variations in LHF-related variables on the climatological LHF are examined using observations from the Global Tropical Moored Buoy Array. The estimated amplitude of the climatological diurnal LHF over the Indo-Pacific warm pool and the equatorial Pacific and Atlantic cold tongues is remarkable, with maximum values exceeding 20.0 W m−2. Diurnal variability of sea surface skin temperature (SSTskin) is the primary contributor to the diurnal LHF amplitude. Because the diurnal SSTskin amplitude has an inverse relationship with surface wind speed over the tropical oceans, an inverse spatial pattern between the diurnal LHF amplitude and surface wind speed results. Resolving diurnal variations in the SSTskin and wind improves the estimate of the climatological LHF by properly capturing the daytime SSTskin and daily mean wind speed, respectively. The diurnal SSTskin-associated contribution is large over the warm pool and equatorial cold tongues where low wind speeds tend to cause strong diurnal SSTskin warming, while the magnitude associated with the diurnal winds is large over the highly dynamic environment of the Inter-Tropical Convergence Zone. The total diurnal contribution is about 9.0 W m−2 on average over the buoy sites. There appears to be a power function (linear) relationship between the diurnal SSTskin-associated (wind-associated) contribution and surface mean wind speed (wind speed enhancement from diurnal variability). The total contribution from diurnal variability can be estimated accurately from high-frequency surface wind measurements using these relationships.


2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Yanping He

AbstractThe relationship between surface latent heat flux and the lower-tropospheric stability (LTS) is examined using ERA-40 reanalysis, NCEP reanalysis and COADS (Comprehensive Ocean-Atmosphere Data Set) ship data in two southern subtropical marine stratus and stratocumulus regions. The change of surface latent heat flux with LTS is determined by a comparison of the correlation of LTS with surface wind speed and with near surface humidity difference. At intermediate LTS (10 K-15 K), both surface evaporation and downward surface radiation flux amplify small LTS perturbations due to the surface wind-LTS relationship and cloud-radiation feedback. At high LTS, surface latent heat flux exceeds its peak value and becomes a regulating mechanism to keep LTS at its commonly observed equilibrium value. Surface radiation flux is seen to decrease at a smaller rate with LTS than surface latent heat flux. By applying the regulating effect of LTS on near surface humidity differences, monthly surface latent heat flux can be better represented.


2017 ◽  
Vol 30 (1) ◽  
pp. 129-143 ◽  
Author(s):  
B. Praveen Kumar ◽  
Meghan F. Cronin ◽  
Sudheer Joseph ◽  
M. Ravichandran ◽  
N. Sureshkumar

A global analysis of latent heat flux (LHF) sensitivity to sea surface temperature (SST) is performed, with focus on the tropics and the north Indian Ocean (NIO). Sensitivity of LHF state variables (surface wind speed Ws and vertical humidity gradients Δq) to SST give rise to mutually interacting dynamical (Ws driven) and thermodynamical (Δq driven) coupled feedbacks. Generally, LHF sensitivity to SST is pronounced over tropics where SST increase causes Ws (Δq) changes, resulting in a maximum decrease (increase) of LHF by ~15 W m−2 (°C)−1. But the Bay of Bengal (BoB) and north Arabian Sea (NAS) remain an exception that is opposite to the global feedback relationship. This uniqueness is attributed to strong seasonality in monsoon Ws and Δq variations, which brings in warm (cold) continental air mass into the BoB and NAS during summer (winter), producing a large seasonal cycle in air–sea temperature difference ΔT (and hence in Δq). In other tropical oceans, surface air is mostly of marine origin and blows from colder to warmer waters, resulting in a constant ΔT ~ 1°C throughout the year, and hence a constant Δq. Thus, unlike other basins, when the BoB and NAS are warming, air temperature warms faster than SST. The resultant decrease in ΔT and Δq contributes to decrease the LHF with increased SST, contrary to other basins. This analysis suggests that, in the NIO, LHF variability is largely controlled by thermodynamic processes, which peak during the monsoon period. These observed LHF sensitivities are then used to speculate how the surface energetics and coupled feedbacks may change in a warmer world.


2021 ◽  
Author(s):  
Eric Maloney ◽  
Hien Bui ◽  
Emily Riley Dellaripa ◽  
Bohar Singh

<p>This study analyzes wind speed and surface latent heat flux anomalies from the Cyclone Global Navigation Satellite System (CYGNSS), aiming to understand the physical mechanisms regulating intraseasonal convection, particularly associated with the Madden-Julian oscillation (MJO). The importance of wind-driven surface flux variability for supporting east Pacific diurnal convective disturbances during boreal summer is also examined. An advantage of CYGNSS compared to other space-based datasets is that its surface wind speed retrievals have reduced attenuation by precipitation, thus providing improved information about the importance of wind-induced surface fluxes for the maintenance of convection. Consistent with previous studies from buoys, CYGNSS shows that enhanced MJO precipitation is associated with enhanced wind speeds, and that associated surface heat fluxes anomalies have a magnitude about 7%-12% of precipitation anomalies. Thus, latent heat flux anomalies are an important maintenance mechanism for MJO convection through the column moist static energy budget. A composite analysis during boreal summer over the eastern north Pacific also supports the idea that wind-induced surface flux is important for MJO maintenance there. We also show the surface fluxes help moisten the atmosphere in advance of diurnal convective disturbances that propagate offshore from the Colombian Coast during boreal summer, helping to sustain such convection.  </p>


2015 ◽  
Vol 47 (5-6) ◽  
pp. 1755-1774 ◽  
Author(s):  
Yingxia Gao ◽  
Pang-Chi Hsu ◽  
Huang-Hsiung Hsu

2021 ◽  
Author(s):  
Zhenzhen Wang ◽  
Renguang Wu

<p>A low sea surface temperature (SST) region extends southward in the central part of southern South China Sea during boreal winter, which is called the South China Sea cold tongue (SCS CT). This talk presents an analysis of the factors of interannual variation of SST in the SCS CT region and the individual and combined impacts of El Niño-Southern Oscillation (ENSO) and East Asian winter monsoon (EAWM) on the SCS CT intensity. During years with ENSO alone or with co-existing ENSO and anomalous EAWM, shortwave radiation and ocean horizontal advection play major roles in the interannual variation of the SCS CT intensity. Ocean advection contributes largely to the SST change in the region southeast of Vietnam. In strong CT years with anomalous EAWM alone, surface wind-related latent heat flux has a major role and shortwave radiation is secondary to the EAWM-induced change of the SCS CT intensity, whereas the role of ocean horizontal advection is relatively small. The above differences in the roles of ocean advection and latent heat flux are associated with the distribution of low level wind anomalies. In anomalous CT years with ENSO, low level anomalous cyclone/anticyclone-related wind speed change leads to latent heat flux anomalies with effects opposite to shortwave radiation. In strong CT years with anomalous EAWM alone, surface wind-related latent heat flux anomalies are large as anomalous winds are aligned with climatological winds.</p>


2018 ◽  
Vol 31 (17) ◽  
pp. 7111-7128 ◽  
Author(s):  
Rongwang Zhang ◽  
Xin Wang ◽  
Chunzai Wang

AbstractSimulations of the global oceanic latent heat flux (LHF) in the CMIP5 multimodel ensemble (MME) were evaluated in comparison with 11 LHF products. The results show that the mean state of LHF in the MME coincides well with that in the observations, except for a slight overestimation in the tropical regions. The reproduction of the seasonal cycle of LHF in the MME is in good agreement with that in the observations. However, biases are relatively obvious in the coastal regions. A prominent upward trend in global-mean LHF is confirmed with all of the LHF products during the period of 1979–2005. Despite the consistent increase of LHF in CMIP5 models, the rates of increase are much weaker than those in the observations, with an average of approximately one-ninth that in the observations. The findings show that the rate of increase of near-surface specific humidity qa in MME is nearly 6 times that in the observations, while the rate of increase of the near-surface wind speed U is less than one-half that in the observations. The faster increase of qa and the slower increase of U could both suppress evaporation, and thus latent heat released by the ocean, which may be one of the reasons that the upward trend of LHF in the MME is nearly one order of magnitude lower than that in the observations.


SOLA ◽  
2020 ◽  
Vol 16A (Special_Edition) ◽  
pp. 12-18
Author(s):  
Shuhei Matsugishi ◽  
Hiroaki Miura ◽  
Tomoe Nasuno ◽  
Masaki Satoh

2017 ◽  
Vol 30 (17) ◽  
pp. 6645-6659 ◽  
Author(s):  
P. Castellanos ◽  
E. J. D. Campos ◽  
J. Piera ◽  
O. T. Sato ◽  
M. A. F. Silva Dias

The influx of warmer and saltier Indian Ocean waters into the Atlantic—the Agulhas leakage—is now recognized to play an important role in the global thermohaline circulation and climate. In this study the results of a ⅞° simulation with the Hybrid Coordinate Ocean Model, which exhibit an augmentation in the Agulhas leakage, is investigated. This increase in the leakage ought to have an impact on the meridional oceanic volume and heat transports in the Atlantic Ocean. Significant linear trends found in the integrated transport at 20°, 15°, and 5°S correlate well with decadal fluctuations of the Agulhas leakage. The augmented transport also seems to be related to an increase in the latent heat flux observed along the northeastern coastline of Brazil since 2003. This study shows that the precipitation on the Brazilian coast has been increasing since 2005, at the same location and with the same regime shift observed for the latent heat flux and the volume transport. This suggests that the increase of the Agulhas transport affects the western boundary system of the tropical Atlantic Ocean, which is directly related to an increase in the precipitation and latent heat flux along the western coast.


Sign in / Sign up

Export Citation Format

Share Document