scholarly journals Latent Heat Flux Sensitivity to Sea Surface Temperature: Regional Perspectives

2017 ◽  
Vol 30 (1) ◽  
pp. 129-143 ◽  
Author(s):  
B. Praveen Kumar ◽  
Meghan F. Cronin ◽  
Sudheer Joseph ◽  
M. Ravichandran ◽  
N. Sureshkumar

A global analysis of latent heat flux (LHF) sensitivity to sea surface temperature (SST) is performed, with focus on the tropics and the north Indian Ocean (NIO). Sensitivity of LHF state variables (surface wind speed Ws and vertical humidity gradients Δq) to SST give rise to mutually interacting dynamical (Ws driven) and thermodynamical (Δq driven) coupled feedbacks. Generally, LHF sensitivity to SST is pronounced over tropics where SST increase causes Ws (Δq) changes, resulting in a maximum decrease (increase) of LHF by ~15 W m−2 (°C)−1. But the Bay of Bengal (BoB) and north Arabian Sea (NAS) remain an exception that is opposite to the global feedback relationship. This uniqueness is attributed to strong seasonality in monsoon Ws and Δq variations, which brings in warm (cold) continental air mass into the BoB and NAS during summer (winter), producing a large seasonal cycle in air–sea temperature difference ΔT (and hence in Δq). In other tropical oceans, surface air is mostly of marine origin and blows from colder to warmer waters, resulting in a constant ΔT ~ 1°C throughout the year, and hence a constant Δq. Thus, unlike other basins, when the BoB and NAS are warming, air temperature warms faster than SST. The resultant decrease in ΔT and Δq contributes to decrease the LHF with increased SST, contrary to other basins. This analysis suggests that, in the NIO, LHF variability is largely controlled by thermodynamic processes, which peak during the monsoon period. These observed LHF sensitivities are then used to speculate how the surface energetics and coupled feedbacks may change in a warmer world.

2014 ◽  
Vol 32 (7) ◽  
pp. 841-857 ◽  
Author(s):  
M. Yamamoto

Abstract. This paper examines meteorological impacts of sea-surface temperature (SST) in the presence of the humid airflow from Tropical Cyclone Talas (2011). To investigate the influence of the SST on the severe weather in and around Japan, sensitivity simulations were conducted using six SST data products covering a period of 7 days. The upward sea-surface latent heat flux that accumulated over the 7-day period was high around the Kuroshio during the slow passage of the tropical cyclone. Large differences were found among the individual SST products around the southern coast of Japan. The coastal warm SST anomaly of ~ 1.5 °C enhanced the surface upward latent heat fluxes (by 60 to 80%), surface southeasterly winds (by 6 to 8%), and surface water mixing ratios (by 4%) over the coastal sea area. The enhanced latent heat flux resulting from the coastal SST anomaly contributed to the further enhancement of the latent heat flux itself via a positive feedback with the amplified surface horizontal wind. The SST anomalies produced an anomaly in 7-day precipitation (ca. 40 mm) along the mountainsides and over a coastal area where the surface wind anomaly was locally large. Thus, coastal SST error is important in the atmospheric simulation of accumulated evaporation and precipitation associated with tropical cyclones making landfall.


2020 ◽  
Vol 33 (10) ◽  
pp. 4369-4389 ◽  
Author(s):  
Yaru Guo ◽  
Yuanlong Li ◽  
Fan Wang ◽  
Yuntao Wei ◽  
Zengrui Rong

AbstractA high-resolution (3–8 km) regional oceanic general circulation model is utilized to understand the sea surface temperature (SST) variability of Ningaloo Niño in the southeast Indian Ocean (SEIO). The model reproduces eight Ningaloo Niño events with good fidelity and reveals complicated spatial structures. Mesoscale noises are seen in the warming signature and confirmed by satellite microwave SST data. Model experiments are carried out to quantitatively evaluate the effects of key processes. The results reveal that the surface turbulent heat flux (primarily latent heat flux) is the most important process (contribution > 68%) in driving and damping the SST warming for most events, while the roles of the Indonesian Throughflow (~15%) and local wind forcing are secondary. A suitable air temperature warming is essential to reproducing the reduced surface latent heat loss during the growth of SST warming (~66%), whereas the effect of the increased air humidity is negligibly small (1%). The established SST warming in the mature phase causes increased latent heat loss that initiates the decay of warming. A 20-member ensemble simulation is performed for the 2010/11 super Ningaloo Niño, which confirms the strong influence of ocean internal processes in the redistribution of SST warming signatures. Oceanic eddies can dramatically modulate the magnitudes of local SST warming, particularly in offshore areas where the “signal-to-noise” ratio is low, raising a caution for evaluating the predictability of Ningaloo Niño and its environmental consequences.


2007 ◽  
Vol 20 (19) ◽  
pp. 4835-4852 ◽  
Author(s):  
A. M. Chiodi ◽  
D. E. Harrison

Abstract It is well known that some austral summertime subtropical Indian Ocean sea surface temperature (SST) variability correlates with rainfall over certain regions of Africa that depend on rainfall for their economic well-being. Recent studies have determined that this SST variability is at least partially driven by latent heat flux variability, but the mechanism has not been fully described. Here, the mechanism that drives this SST variability is reexamined using analyses of operational air–sea fluxes, ocean mixed layer modeling, and simple atmospheric boundary layer physics. The SST variability of interest is confirmed to be mainly driven by latent heat flux variability, which is shown, for the first time, to be mainly caused by near-surface humidity variability. This humidity variability is then shown to be fundamentally driven by the anomalous meridional advection of water vapor. The meridional wind anomalies of interest are subsequently found to occur when the subtropical atmospheric anticyclone is preferentially located toward one of the sides (east/west) of the basin.


2019 ◽  
Vol 11 (12) ◽  
pp. 1476 ◽  
Author(s):  
Qi Shi ◽  
Mark A. Bourassa

This study provides the first detailed analysis of oceanic and atmospheric responses to the current-stress, wave-stress, and wave-current-stress interactions around the Gulf Stream using a high-resolution three-way coupled regional modeling system. In general, our results highlight the substantial impact of coupling currents and/or waves with wind stress on the air–sea fluxes over the Gulf Stream. The stress and the curl of the stress are crucial to mixed-layer energy budgets and sea surface temperature. In the wave-current-stress coupled experiment, wind stress increased by 15% over the Gulf Stream. Alternating positive and negative bands of changes of Ekman-related vertical velocity appeared in response to the changes of the wind stress curl along the Gulf Stream, with magnitudes exceeding 0.3 m/day (the 95th percentile). The response of wind stress and its curl to the wave-current-stress coupling was not a linear combination of responses to the wave-stress coupling and the current-stress coupling because the ocean and wave induced changes in the atmosphere showed substantial feedback on the ocean. Changes of a latent heat flux in excess of 20 W/m2 and a sensible heat flux in excess of 5 W/m2 were found over the Gulf Stream in all coupled experiments. Sensitivity tests show that sea surface temperature (SST) induced difference of air–sea humidity is a major contributor to latent heat flux (LHF) change. Validation is challenging because most satellite observations lack the spatial resolution to resolve the current-induced changes in wind stress curls and heat fluxes. Scatterometer observations can be used to examine the changes in wind stress across the Gulf Stream. The conversion of model data to equivalent neutral winds is highly dependent on the physics considered in the air–sea turbulent fluxes, as well as air–sea temperature differences. This sensitivity is shown to be large enough that satellite observations of winds can be used to test the flux parameterizations in coupled models.


MAUSAM ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 313-324
Author(s):  
P. K. MOHANTY ◽  
S. K. DASH

ABSTRACT. Characteristics of the surface fields. such as zonal and meridional components of pseudostress. surface pressure, latent and sensible heat fluxes, sea surface temperature (SST) and air temperature for the years 1985 and 1986, are studied using ECMWF model-analysed data and FSU data obtained from TOGA CD-ROM (1990). Three branches of monsoon. Viz. (i) Arabian Sea; (ii) Bay of Bengal and (iii) South China 1 Sea are observed in pseudostress, surface pressure and latent heat flux. However, the other three surface fieldsdo not reflect the branching phenomenon. The Arabian Sea and Bay of Bengal branches depict strong signals of variability in the surface fields in association with the monsoon variability compared to the south China Sea branch. Arabian Sea branch is observed to have the strongest signals in the pseudostress and latent heat flux transfer whereas surface pressure is having the lowest value over the Bay of Bengal. Southern Indian Ocean shows significant variability in surface pressure in comparison to the three branches of monsoon. Strong positive radient of pseudostress in association with sudden increase of latent heat flux front May to June, and the pre-monsoonal pressure drop (March to April) in 1985 are the most prominent features associated with better monsoon activity. Inter-annual variability in sea surface temperature (SST) is not well marked but differences in SST amongst the three branches are significant.  


2011 ◽  
Vol 29 (2) ◽  
pp. 393-399
Author(s):  
T. I. Tarkhova ◽  
M. S. Permyakov ◽  
E. Yu. Potalova ◽  
V. I. Semykin

Abstract. Sea surface wind perturbations over sea surface temperature (SST) cold anomalies over the Kashevarov Bank (KB) of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT) data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.


Sign in / Sign up

Export Citation Format

Share Document