scholarly journals Diagnosing the Annual Cycle Modes in the Tropical Atlantic Ocean Using a Directly Coupled Atmosphere–Ocean GCM

2006 ◽  
Vol 19 (20) ◽  
pp. 5319-5342 ◽  
Author(s):  
David G. DeWitt ◽  
Edwin K. Schneider

Abstract The annual cycle of sea surface temperature (SST) in the tropical Atlantic of a directly coupled atmosphere–ocean general circulation model (CGCM) is decomposed into the parts forced by different surface fluxes (denoted as modes) for the two extreme months of March and August using forced ocean experiments. Almost all previous diagnostic work of the forcing of the SST annual cycle in the Atlantic has concentrated on the near-equatorial region. Here, the annual cycle is examined within the latitude range of 25°S–25°N to facilitate comparison with the interannual variability. The structure of the response to the different surface flux forcings bears some resemblance to the interannual SST modes in the tropical Atlantic, which are diagnosed using rotated empirical orthogonal function (REOF) analysis. Diagnosis of the forcing of the annual cycle modes and the interannual modes shows that they do not always have a common cause. Hence, the simple interpretation that the leading interannual modes are perturbations to the annual cycle is not always valid. In particular, the equatorial SST annual cycle mode is primarily driven by variations in vertical velocity while the equatorial interannual mode is associated with eastward-propagating thermocline anomalies and is forced by both thermocline anomalies and vertical velocity anomalies. As for the interannual modes, there exist off-equatorial annual cycle modes in both the Northern and Southern Hemispheres. The annual cycle off-equatorial mode in both hemispheres is shown to be primarily driven by heat flux variations. The Southern Hemisphere interannual mode is primarily driven by heat flux variations while the Northern Hemisphere interannual mode shows a strong influence of thermocline depth anomalies. In addition, the Southern Hemisphere interannual mode is centered about 10° south of the annual cycle mode. An interannual mode that has maximum variability along the South American coast south of the equator is shown to be associated with thermocline depth anomalies. This interannual mode has no analog in the annual cycle modes. The coupled model simulation of the annual cycle is found to be fairly realistic so that the results presented here could have applicability to the observed Atlantic.

2016 ◽  
Vol 29 (18) ◽  
pp. 6425-6444 ◽  
Author(s):  
Graham R. Simpkins ◽  
Yannick Peings ◽  
Gudrun Magnusdottir

Abstract Several recent studies have connected Antarctic climate variability to tropical Atlantic sea surface temperatures (SST), proposing a Rossby wave response from the Atlantic as the primary dynamical mechanism. In this investigation, reanalysis data and atmospheric general circulation model experiments are used to further diagnose these dynamical links. Focus is placed on the possible mediating role of Pacific processes, motivated by the similar spatial characteristics of Southern Hemisphere (SH) teleconnections associated with tropical Atlantic and Pacific SST variability. During austral winter (JJA), both reanalyses and model simulations reveal that Atlantic teleconnections represent a two-mechanism process, whereby increased tropical Atlantic SST promotes two conditions: 1) an intensification of the local Atlantic Hadley circulation (HC), driven by enhanced interaction between SST anomalies and the ITCZ, that increases convergence at the descending branch, establishing anomalous vorticity forcing from which a Rossby wave emanates, expressed as a pattern of alternating positive and negative geopotential height anomalies across the SH extratropics (the so-called HC-driven components); and 2) perturbations to the zonal Walker circulation (WC), driven primarily by an SST-induced amplification, that creates a pattern of anomalous upper-level convergence across the central/western Pacific, from which an ENSO-like Rossby wave train can be triggered (the so-called WC-driven components). While the former are found to dominate, the WC-driven components play a subsidiary yet important role. Indeed, it is the superposition of these two separate but interrelated mechanisms that gives the overall observed response. By demonstrating an additional Pacific-related component to Atlantic teleconnections, this study highlights the need to consider Atlantic–Pacific interactions when diagnosing tropical-related climate variability in the SH extratropics.


2013 ◽  
Vol 26 (7) ◽  
pp. 2145-2159 ◽  
Author(s):  
Tomomichi Ogata ◽  
Shang-Ping Xie ◽  
Jian Lan ◽  
Xiaotong Zheng

Abstract Interannual anomalies of sea surface temperature (SST), wind, and cloudiness in the southeastern tropical Indian Ocean (SE-TIO) show negative skewness. In this research, asymmetry between warm and cold episodes in the SE-TIO and the importance of ocean dynamics are investigated. A coupled model simulation and observations show an asymmetric relationship between SST and the thermocline depth in the SE-TIO where SST is more sensitive to an anomalous shoaling than to deepening of the thermocline. This asymmetric thermocline feedback on SST is a result of a deep mean thermocline. Sensitivity experiments with an ocean general circulation model (OGCM) show that a negative SST skewness arises in response to sinusoidal zonal wind variations that are symmetric between the westerly and easterly phases. Heat budget analysis with an OGCM hindcast also supports the importance of ocean dynamics for SST skewness off Sumatra and Java.


2007 ◽  
Vol 20 (16) ◽  
pp. 4147-4159 ◽  
Author(s):  
A. Timmermann ◽  
S. J. Lorenz ◽  
S-I. An ◽  
A. Clement ◽  
S-P. Xie

Abstract Using a coupled general circulation model, the responses of the climate mean state, the annual cycle, and the El Niño–Southern Oscillation (ENSO) phenomenon to orbital changes are studied. The authors analyze a 1650-yr-long simulation with accelerated orbital forcing, representing the period from 142 000 yr b.p. (before present) to 22 900 yr a.p. (after present). The model simulation does not include the time-varying boundary conditions due to ice sheet and greenhouse gas forcing. Owing to the mean seasonal cycle of cloudiness in the off-equatorial regions, an annual mean precessional signal of temperatures is generated outside the equator. The resulting meridional SST gradient in the eastern equatorial Pacific modulates the annual mean meridional asymmetry and hence the strength of the equatorial annual cycle. In turn, changes of the equatorial annual cycle trigger abrupt changes of ENSO variability via frequency entrainment, resulting in an anticorrelation between annual cycle strength and ENSO amplitude on precessional time scales.


1997 ◽  
Vol 25 ◽  
pp. 327-332 ◽  
Author(s):  
Marika M. Holland ◽  
Julie L. Schramm ◽  
Judith A. Curry

Due to large uncertainties in many of the parameters used to model sea ice, it is possible that models with significantly different physical processes can be tuned to obtain realistic present-day simulations. However, in studies of climate change, it is the response of the model it various perturbations that is important, in studies response can be significantly different in sea-ice models that include or exclude various physical feedback mechanisms. Because simplifications in sea-ice physics are necessary for general circulation model experiments, it is important to assess which physical processes are essential for the accurate determination of the sensitivity of the ice pack to climate perturbations. We have attempted to address these issues using a new coupled ice-thickness distribution ocean mixed-layer model. The sensitivity of the model to surface heat-flux perturbations is examined and the importance of the ice ocean and ice-albedo feedback mechanisms in determining this sensitivity is analyzed. We find that the ice ocean and ice-albedo feedback processes are not mutually exclusive, and that they both significantly alter the model response to surface heat flux perturbations.


2018 ◽  
Vol 9 (1) ◽  
pp. 285-297 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño–Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2021 ◽  
Author(s):  
Yanmichel Morfa-Avalos

<p>Vertical motions are fundamental to atmospheric dynamics and our understanding of phenomena such as moist convection. A long-standing problem in atmospheric sciences is to understand the mesoscale energy spectra. Several numerical studies show that the vertical velocity spectrum has a homogeneous energy distribution across the mesoscales with a flat spectrum. Compared to the energy spectra of horizontal motion, the mechanisms that govern the spectrum of vertical velocity are less well known. In the troposphere, most of the horizontal mesoscale energy comes from divergent motions. At large scales O(100 km), vertical velocity relates, to a good approximation, to the vertically averaged divergence of horizontal motions by continuity in the incompressible limit. Recent measurements from NARVAL-2 (Next Generation Remote Sensing for Validation Studies) campaign conducted in the tropical Atlantic, unveiled that mesoscale horizontal mass divergence profiles possess a rich vertical structure and high spatio-temporal variability. Although the premise of a radiatively-balanced circulation holds on the long-term average, instantaneous deviations from this equilibrium occur in the form of wave-like oscillations. Numerical studies show that our state-of-the-art models can reproduce the observed variability in mesoscale divergence. We ask the following question in support of the previous arguments: What controls the spectrum of coherent mesoscale vertical motion? We aim to elucidate the mechanisms determining the homogeneous energy distribution across horizontal scales of vertical velocity spectra. This study designs numerical experiments, which include mechanisms-denial simulations employing the Icosahedral Nonhydrostatic (ICON) model. We conducted numerical simulations on a limited-area domain located in the western tropical Atlantic (4°S – 18°N, 64°W – 42°W). This domain has a horizontal resolution of 1.25 km and a lid at 30 km—the analysis period spans 48 hours. The experiments include the following: (i) a control run using DWD NWP physics configuration (ii) a dry atmosphere with all moist processes excluded along with the latent heat surface fluxes (iii) clouds invisible to radiation and, (iv) effects of saturation adjustment on temperature neglected while maintaining surface heat fluxes. Preliminary results show that the divergence profiles horizontally averaged over 200 km present a clear dominance of vertical wavelengths of 3 – 6 km. We found autocorrelation time-scales of around 4 – 6 hours increasing with altitude outside convective areas and consistent among all simulations. All experiments show a systematic decrease of about 50% in the temporal autocorrelation inside convective areas; therefore, moist convective processes modulate divergence's temporal variability. Moreover, we found that local moist processes contribute the most considerable fraction to the energy spectrum at scales < 200 km. The spectral response to moist processes is broad and extends into the free troposphere. The spectral response of surface fluxes instead is confined to the subcloud layer.</p>


2017 ◽  
Author(s):  
Hannah M. Horowitz ◽  
Daniel J. Jacob ◽  
Yanxu Zhang ◽  
Theodore S. Dibble ◽  
Franz Slemr ◽  
...  

Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII controls Hg deposition to ecosystems. Here we implement a new mechanism for atmospheric Hg0 / HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere-ocean Hg0 / HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant, and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the ~ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg0 + HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII-organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because southern hemisphere Hg mainly originates from oceanic emissions rather than transport from the northern hemisphere. The model reproduces the observed seasonal TGM variation at northern mid-latitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but does not reproduce the lack of seasonality observed at southern hemisphere marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM-ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China, including the maximum over the US Gulf Coast driven by HgBr oxidation by NO2 and HO2. Low Hg wet deposition observed over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80 % of global HgII deposition takes place over the oceans, reflecting the marine origin of Br and low concentrations of marine organics for HgII reduction, and most of HO2 and NO2 for second-stage HgBr oxidation.


2017 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to an extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a Reduced Gravity Ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of an extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics opposes the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates a strong warming in the centre-east of the basin from April to August balanced by a cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2005 ◽  
Vol 18 (12) ◽  
pp. 1925-1941 ◽  
Author(s):  
Keith Haines ◽  
Chris Old

Abstract A study of thermally driven water mass transformations over 100 yr in the ocean component of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is presented. The processes of surface-forced transformations, subduction and mixing, both above and below the winter mixed layer base, are quantified. Subtropical Mode Waters are formed by surface heat fluxes and subducted at more or less the same rate. However, Labrador Seawater and Nordic Seawater classes (the other main subduction classes) are primarily formed by mixing within the mixed layer with very little formation directly from surface heat fluxes. The Subpolar Mode Water classes are dominated by net obduction of water back into the mixed layer from below. Subtropical Mode Water (18°C) variability shows a cycle of formation by surface fluxes, subduction ∼2 yr later, followed by mixing with warmer waters below the winter mixed layer base during the next 3 yr, and finally obduction back into the mixed layer at 21°C, ∼5 yr after the original formation. Surface transformation of Subpolar Mode Waters, ∼12°C, are led by surface transformations of warmer waters by up to 5 yr as water is transferred from the subtropical gyre. They are also led by obduction variability from below the mixed layer, by ∼2 yr. The variability of obduction in Subpolar Mode Waters also appears to be preceded, by 3–5 yr, by variability in subduction of Labrador Sea Waters at ∼6°C. This supports a mechanism in which southward-propagating Labrador seawater anomalies below the subpolar gyre can influence the upper water circulation and obduction into the mixed layer.


2018 ◽  
Vol 35 (7) ◽  
pp. 1505-1519 ◽  
Author(s):  
Yu-Chiao Liang ◽  
Matthew R. Mazloff ◽  
Isabella Rosso ◽  
Shih-Wei Fang ◽  
Jin-Yi Yu

AbstractThe ability to construct nitrate maps in the Southern Ocean (SO) from sparse observations is important for marine biogeochemistry research, as it offers a geographical estimate of biological productivity. The goal of this study is to infer the skill of constructed SO nitrate maps using varying data sampling strategies. The mapping method uses multivariate empirical orthogonal functions (MEOFs) constructed from nitrate, salinity, and potential temperature (N-S-T) fields from a biogeochemical general circulation model simulation Synthetic N-S-T datasets are created by sampling modeled N-S-T fields in specific regions, determined either by random selection or by selecting regions over a certain threshold of nitrate temporal variances. The first 500 MEOF modes, determined by their capability to reconstruct the original N-S-T fields, are projected onto these synthetic N-S-T data to construct time-varying nitrate maps. Normalized root-mean-square errors (NRMSEs) are calculated between the constructed nitrate maps and the original modeled fields for different sampling strategies. The sampling strategy according to nitrate variances is shown to yield maps with lower NRMSEs than mapping adopting random sampling. A k-means cluster method that considers the N-S-T combined variances to identify key regions to insert data is most effective in reducing the mapping errors. These findings are further quantified by a series of mapping error analyses that also address the significance of data sampling density. The results provide a sampling framework to prioritize the deployment of biogeochemical Argo floats for constructing nitrate maps.


Sign in / Sign up

Export Citation Format

Share Document