scholarly journals Dry Bias in Satellite-Derived Clear-Sky Water Vapor and Its Contribution to Longwave Cloud Radiative Forcing

2006 ◽  
Vol 19 (21) ◽  
pp. 5570-5580 ◽  
Author(s):  
Byung-Ju Sohn ◽  
Johannes Schmetz ◽  
Rolf Stuhlmann ◽  
Joo-Young Lee

Abstract In this paper, the amount of satellite-derived longwave cloud radiative forcing (CRF) that is due to an increase in upper-tropospheric water vapor associated with the evolution from clear-sky to the observed all-sky conditions is assessed. This is important because the satellite-derived clear-sky outgoing radiative fluxes needed for the CRF determination are from cloud-free areas away from the cloudy regions in order to avoid cloud contamination of the clear-sky fluxes. However, avoidance of cloud contamination implies a sampling problem as the clear-sky fluxes represent an area drier than the hypothetical clear-sky humidity in cloudy regions. While this issue has been recognized in earlier works this study makes an attempt to quantitatively estimate the bias in the clear-sky longwave CRF. Water vapor amounts in the 200–500-mb layer corresponding to all-sky condition are derived from microwave measurements with the Special Sensor Microwave Temperature-2 Profiler and are used in combination with cloud data for determining the clear-sky water vapor distribution of that layer. The obtained water vapor information is then used to constrain the humidity profiles for calculating clear-sky longwave fluxes at the top of the atmosphere. It is shown that the clear-sky moisture bias in the upper troposphere can be up to 40%–50% drier over convectively active regions. Results indicate that up to 12 W m−2 corresponding to about 15% of the satellite-derived longwave CRF in tropical regions can be attributed to the water vapor changes associated with cloud development.

2005 ◽  
Vol 18 (20) ◽  
pp. 4235-4252 ◽  
Author(s):  
Michael S. Town ◽  
Von P. Walden ◽  
Stephen G. Warren

Abstract Annual cycles of downwelling broadband infrared radiative flux and spectral downwelling infrared flux were determined using data collected at the South Pole during 2001. Clear-sky conditions are identified by comparing radiance ratios of observed and simulated spectra. Clear-sky fluxes are in the range of 110–125 W m−2 during summer (December–January) and 60–80 W m−2 during winter (April–September). The variability is due to day-to-day variations in temperature, strength of the surface-based temperature inversion, atmospheric humidity, and the presence of “diamond dust” (near-surface ice crystals). The persistent presence of diamond dust under clear skies during the winter is evident in monthly averages of clear-sky radiance. About two-thirds of the clear-sky flux is due to water vapor, and one-third is due to CO2, both in summer and winter. The seasonal constancy of this approximately 2:1 ratio is investigated through radiative transfer modeling. Precipitable water vapor (PWV) amounts were calculated to investigate the H2O/CO2 flux ratio. Monthly mean PWV during 2001 varied from 1.6 mm during summer to 0.4 mm during winter. Earlier published estimates of PWV at the South Pole are similar for winter, but are 50% lower for summer. Possible reasons for low earlier estimates of summertime PWV are that they are based either on inaccurate hygristor technology or on an invalid assumption that the humidity was limited by saturation with respect to ice. The average fractional cloud cover derived from the spectral infrared data is consistent with visual observations in summer. However, the wintertime average is 0.3–0.5 greater than that obtained from visual observations. The annual mean of longwave downwelling cloud radiative forcing (LDCRF) for 2001 is about 23 W m−2 with no apparent seasonal cycle. This is about half that of the global mean LDCRF; the low value is attributed to the small optical depths and low temperatures of Antarctic clouds.


2010 ◽  
Vol 23 (19) ◽  
pp. 5288-5293 ◽  
Author(s):  
Norman G. Loeb ◽  
Wenying Su

Abstract To provide a lower bound for the uncertainty in measurement-based clear- and all-sky direct aerosol radiative forcing (DARF), a radiative perturbation analysis is performed for the ideal case in which the perturbations in global mean aerosol properties are given by published values of systematic uncertainty in Aerosol Robotic Network (AERONET) aerosol measurements. DARF calculations for base-state climatological cloud and aerosol properties over ocean and land are performed, and then repeated after perturbing individual aerosol optical properties (aerosol optical depth, single-scattering albedo, asymmetry parameter, scale height, and anthropogenic fraction) from their base values, keeping all other parameters fixed. The total DARF uncertainty from all aerosol parameters combined is 0.5–1.0 W m−2, a factor of 2–4 greater than the value cited in the Intergovernmental Panel on Climate Change’s (IPCC’s) Fourth Assessment Report. Most of the total DARF uncertainty in this analysis is associated with single-scattering albedo uncertainty. Owing to the greater sensitivity to single-scattering albedo in cloudy columns, DARF uncertainty in all-sky conditions is greater than in clear-sky conditions, even though the global mean clear-sky DARF is more than twice as large as the all-sky DARF.


2014 ◽  
Vol 27 (20) ◽  
pp. 7769-7780 ◽  
Author(s):  
Vanda Salgueiro ◽  
Maria João Costa ◽  
Ana Maria Silva ◽  
Daniele Bortoli

Abstract The shortwave cloud radiative forcing is calculated from surface measurements taken in Évora from 2003 to 2010 with a multifilter rotating shadowband radiometer (MFRSR) and with an Eppley black and white pyranometer. A new approach to estimate the clear-sky irradiance based on radiative transfer calculations is also proposed. The daily-mean values of the cloud radiative forcing (absolute and normalized) as well as their monthly and seasonal variabilities are analyzed. The study shows greater variability of radiative forcing during springtime with respect to the other seasons. The mean daily cloudy periods have seasonal variation proportional to the seasonal variation of the cloud radiative forcing, with maximum values also occurring during springtime. The minimum values found for the daily-mean cloud radiative forcing are −139.5 and −198.4 W m−2 for MFRSR and Eppley data, respectively; the normalized values present about 40% of sample amplitude, both for MFRSR and Eppley. In addition, a quantitative relationship between the MFRSR and Eppley cloud radiative forcings applicable to other locations is proposed.


2016 ◽  
Vol 17 (7) ◽  
pp. 1999-2011 ◽  
Author(s):  
Steven D. Miller ◽  
Fang Wang ◽  
Ann B. Burgess ◽  
S. McKenzie Skiles ◽  
Matthew Rogers ◽  
...  

Abstract Runoff from mountain snowpack is an important freshwater supply for many parts of the world. The deposition of aeolian dust on snow decreases snow albedo and increases the absorption of solar irradiance. This absorption accelerates melting, impacting the regional hydrological cycle in terms of timing and magnitude of runoff. The Moderate Resolution Imaging Spectroradiometer (MODIS) Dust Radiative Forcing in Snow (MODDRFS) satellite product allows estimation of the instantaneous (at time of satellite overpass) surface radiative forcing caused by dust. While such snapshots are useful, energy balance modeling requires temporally resolved radiative forcing to represent energy fluxes to the snowpack, as modulated primarily by varying cloud cover. Here, the instantaneous MODDRFS estimate is used as a tie point to calculate temporally resolved surface radiative forcing. Dust radiative forcing scenarios were considered for 1) clear-sky conditions and 2) all-sky conditions using satellite-based cloud observations. Comparisons against in situ stations in the Rocky Mountains show that accounting for the temporally resolved all-sky solar irradiance via satellite retrievals yields a more representative time series of dust radiative effects compared to the clear-sky assumption. The modeled impact of dust on enhanced snowmelt was found to be significant, accounting for nearly 50% of the total melt at the more contaminated station sites. The algorithm is applicable to regional basins worldwide, bearing relevance to both climate process research and the operational management of water resources.


2007 ◽  
Vol 25 (11) ◽  
pp. 2309-2320 ◽  
Author(s):  
S. Suresh Babu ◽  
K. Krishna Moorthy ◽  
S. K. Satheesh

Abstract. Seasonal distinctiveness in the microphysical and optical properties of columnar and near-surface (in the well mixed region) aerosols, associated with changes in the prevailing synoptic conditions, were delineated based on extensive (spread over 4 years) and collocated measurements at the tropical coastal location, Trivandrum (8.55° N; 76.97° E, 3 m a.m.s.l.), and the results were summarized in Part 1 of this two-part paper. In Part 2, we use these properties to develop empirical seasonal aerosol models, which represent the observed features fairly accurately, separately for winter monsoon season (WMS, December through March), inter-monsoon season (IMS, April and May), summer monsoon season (SMS, June through September) and post monsoon season (PMS, October and November). The models indicate a significant transformation in the aerosol environment from an anthropogenic-dominance in WMS to a natural-dominance in SMS. The modeled aerosol properties are used for estimating the direct, short wave aerosol radiative forcing, under clear-sky conditions. Our estimates show large seasonal changes. Under clear sky conditions, the daily averaged short-wave TOA forcing changes from its highest values during WMS, to the lowest values in SMS; this seasonal change being brought-in mainly by the reduction in the abundance and the mass fraction (to the composite) of black carbon aerosols and of accumulation mode aerosols. The resulting atmospheric forcing varies from the highest, (47 to 53 W m−2) in WMS to the lowest (22 to 26 W m−2) in SMS.


2021 ◽  
Author(s):  
Sarosh Alam Ghausi ◽  
Axel Kleidon ◽  
Subimal Ghosh

<p>Extreme precipitation is expected to increase at the rate of 7% per degree rise in temperature as suggested by the Clausius-Clapeyron equation (also known as CC scaling). Observations however, show deviations from the CC rate, with mostly negative precipitation - temperature scaling in warm tropical regions. Here we explain the negative precipitation scaling in the tropics with the cloud radiative effect on surface temperatures. Temperatures are shaped by the surface energy balance, which is affected by clouds, and hence temperatures are not independent of precipitation. We used observations from India and found negative scaling rates over most regions as extreme precipitation scaling tends to breakdown at temperatures of about 23◦to 25◦C. We show that these negative scaling rates arise from the radiative cooling of clouds associated with precipitation events which is predominant in India during the summer monsoon season. To test our hypothesis, we used an energy balance model constrained by assumption that convective exchange within atmosphere works at its thermodynamic limit of maximum power. Using the NASA-CERES radiation product, we calculated surface temperatures for “All sky” and “Clear sky” conditions to include/exclude the effect of cloud radiative forcing. Our results show a diametric change in precipitation scaling after removing the cooling effect of clouds on surface temperatures. Negative precipitation scaling (-4% /◦C) was found when using “All sky” conditions, but these come close to the CC rate (7% to 9% /◦C) when estimated using temperatures derived from “Clear sky” conditions. The breakdown in extreme precipitation scaling at high temperatures also disappeared forthe “Clear sky” temperatures. This implies that the breakdown in scaling may not relate to changes in aridity or the lack of moisture, but rather to the associated changes in cloud cover. Negative scaling rates derived from observations are thus likely to misrepresent the response of extreme precipitation to global warming in tropical regions. Our findings suggest that an intensification of precipitation extremes at CC rate with global warming is consistent with observations.</p><p>Keywords: Extreme Precipitation, CC scaling, Maximum Power, Indian Mon-soon</p>


2006 ◽  
Vol 19 (9) ◽  
pp. 1765-1783 ◽  
Author(s):  
Xiquan Dong ◽  
Baike Xi ◽  
Patrick Minnis

Abstract Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layered low (0–3 km), middle (3–6 km), and high clouds (>6 km) using ARM SCF ground-based paired lidar–radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of ∼10 W m−2. The annual averages of total and single-layered low-, middle-, and high-cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total- and low-cloud amounts peak during January and February and reach a minimum during July and August; high clouds occur more frequently than other types of clouds with a peak in summer. The average annual downwelling surface SW fluxes for total and low clouds (151 and 138 W m−2, respectively) are less than those under middle and high clouds (188 and 201 W m−2, respectively), but the downwelling LW fluxes (349 and 356 W m−2) underneath total and low clouds are greater than those from middle and high clouds (337 and 333 W m−2). Low clouds produce the largest LW warming (55 W m−2) and SW cooling (−91 W m−2) effects with maximum and minimum absolute values in spring and summer, respectively. High clouds have the smallest LW warming (17 W m−2) and SW cooling (−37 W m−2) effects at the surface. All-sky SW cloud radiative forcing (CRF) decreases and LW CRF increases with increasing cloud fraction with mean slopes of −0.984 and 0.616 W m−2 %−1, respectively. Over the entire diurnal cycle, clouds deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly affected by uncertainties in data sampling and clear-sky screening. Traditionally, cloud radiative forcing includes not only the radiative impact of the hydrometeors, but also the changes in the environment. Taken together over the ARM SCF, changes in humidity and surface albedo between clear and cloudy conditions offset ∼20% of the NET radiative forcing caused by the cloud hydrometeors alone. Variations in water vapor, on average, account for 10% and 83% of the SW and LW CRFs, respectively, in total cloud cover conditions. The error analysis further reveals that the cloud hydrometeors dominate the SW CRF, while water vapor changes are most important for LW flux changes in cloudy skies. Similar studies over other locales are encouraged where water and surface albedo changes from clear to cloudy conditions may be much different than observed over the ARM SCF.


2020 ◽  
Vol 20 (13) ◽  
pp. 8251-8266 ◽  
Author(s):  
Tao Tang ◽  
Drew Shindell ◽  
Yuqiang Zhang ◽  
Apostolos Voulgarakis ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. Shortwave cloud radiative effects (SWCREs), defined as the difference of the shortwave radiative flux between all-sky and clear-sky conditions at the surface, have been reported to play an important role in influencing the Earth's energy budget and temperature extremes. In this study, we employed a set of global climate models to examine the SWCRE responses to CO2, black carbon (BC) aerosols, and sulfate aerosols in boreal summer over the Northern Hemisphere. We found that CO2 causes positive SWCRE changes over most of the NH, and BC causes similar positive responses over North America, Europe, and eastern China but negative SWCRE over India and tropical Africa. When normalized by effective radiative forcing, the SWCRE from BC is roughly 3–5 times larger than that from CO2. SWCRE change is mainly due to cloud cover changes resulting from changes in relative humidity (RH) and, to a lesser extent, changes in cloud liquid water, circulation, dynamics, and stability. The SWCRE response to sulfate aerosols, however, is negligible compared to that for CO2 and BC because part of the radiation scattered by clouds under all-sky conditions will also be scattered by aerosols under clear-sky conditions. Using a multilinear regression model, it is found that mean daily maximum temperature (Tmax) increases by 0.15 and 0.13 K per watt per square meter (W m−2) increase in local SWCRE under the CO2 and BC experiment, respectively. When domain-averaged, the contribution of SWCRE change to summer mean Tmax changes was 10 %–30 % under CO2 forcing and 30 %–50 % under BC forcing, varying by region, which can have important implications for extreme climatic events and socioeconomic activities.


Sign in / Sign up

Export Citation Format

Share Document