scholarly journals North American Droughts of the Last Millennium from a Gridded Network of Tree-Ring Data

2007 ◽  
Vol 20 (7) ◽  
pp. 1353-1376 ◽  
Author(s):  
Celine Herweijer ◽  
Richard Seager ◽  
Edward R. Cook ◽  
Julien Emile-Geay

Abstract Drought is the most economically expensive recurring natural disaster to strike North America in modern times. Recently available gridded drought reconstructions have been developed for most of North America from a network of drought-sensitive tree-ring chronologies, many of which span the last 1000 yr. These reconstructions enable the authors to put the famous droughts of the instrumental record (i.e., the 1930s Dust Bowl and the 1950s Southwest droughts) into the context of 1000 yr of natural drought variability on the continent. We can now, with this remarkable new record, examine the severity, persistence, spatial signatures, and frequencies of drought variability over the past milllennium, and how these have changed with time. The gridded drought reconstructions reveal the existence of successive “megadroughts,” unprecedented in persistence (20–40 yr), yet similar in year-to-year severity and spatial distribution to the major droughts experienced in today’s North America. These megadroughts occurred during a 400-yr-long period in the early to middle second millennium a.d., with a climate varying as today’s, but around a drier mean. The implication is that the mechanism forcing persistent drought in the West and the Plains in the instrumental era is analagous to that underlying the megadroughts of the medieval period. The leading spatial mode of drought variability in the recontructions resembles the North American ENSO pattern: widespread drought across the United States, centered on the Southwest, with a hint of the opposite phase in the Pacific Northwest. Recently, climate models forced by the observed history of tropical Pacific SSTs have been able to successfully simulate all of the major North American droughts of the last 150 yr. In each case, cool “La Niña–like” conditions in the tropical Pacific are consistent with North American drought. With ENSO showing a pronounced signal in the gridded drought recontructions of the last millennium, both in terms of its link to the leading spatial mode, and the leading time scales of drought variability (revealed by multitaper spectral analysis and wavelet analysis), it is postulated that, as for the modern day, the medieval megadroughts were forced by protracted La Niña–like tropical Pacific SSTs. Further evidence for this comes from the global hydroclimatic “footprint” of the medieval era revealed by existing paleoclimatic archives from the tropical Pacific and ENSO-sensitive tropical and extratropical land regions. In general, this global pattern matches that observed for modern-day persistent North American drought, whereby a La Niña–like tropical Pacific is accompanied by hemispheric, and in the midlatitudes, zonal, symmetry of hydroclimatic anomalies.

2021 ◽  
Vol 2 (2) ◽  
pp. 395-412
Author(s):  
Patrick Martineau ◽  
Hisashi Nakamura ◽  
Yu Kosaka

Abstract. The wintertime influence of tropical Pacific sea surface temperature (SST) variability on subseasonal variability is revisited by identifying the dominant mode of covariability between 10–60 d band-pass-filtered surface air temperature (SAT) variability over the North American continent and winter-mean SST over the tropical Pacific. We find that the El Niño–Southern Oscillation (ENSO) explains a dominant fraction of the year-to-year changes in subseasonal SAT variability that are covarying with SST and thus likely more predictable. In agreement with previous studies, we find a tendency for La Niña conditions to enhance the subseasonal SAT variability over western North America. This modulation of subseasonal variability is achieved through interactions between subseasonal eddies and La Niña-related changes in the winter-mean circulation. Specifically, eastward-propagating quasi-stationary eddies over the North Pacific are more efficient in extracting energy from the mean flow through the baroclinic conversion during La Niña. Structural changes of these eddies are crucial to enhance the efficiency of the energy conversion via amplified downgradient heat fluxes that energize subseasonal eddy thermal anomalies. The enhanced likelihood of cold extremes over western North America is associated with both an increased subseasonal SAT variability and the cold winter-mean response to La Niña.


2007 ◽  
Vol 20 (22) ◽  
pp. 5527-5552 ◽  
Author(s):  
Richard Seager

Abstract The causes and global context of the North American drought between 1998 and 2004 are examined using atmospheric reanalyses and ensembles of atmosphere model simulations variously forced by global SSTs or tropical Pacific SSTs alone. The drought divides into two distinct time intervals. Between 1998 and 2002 it coincided with a persistent La Niña–like state in the tropical Pacific, a cool tropical troposphere, poleward-shifted jet streams, and, in the zonal mean, eddy-driven descent in midlatitudes. During the winters reduced precipitation over North America in the climate models was sustained by anomalous subsidence and reductions of moisture convergence by the stationary flow and transient eddies. During the summers reductions of evaporation and mean flow moisture convergence drove the precipitation reduction, while transient eddies acted diffusively to oppose this. During these years the North American drought fitted into a global pattern of circulation and hydroclimate anomalies with noticeable zonal and hemispheric symmetry. During the later period of the drought, from 2002 to 2004, weak El Niño conditions prevailed and, while the global climate adjusted accordingly, western North America remained, uniquely among midlatitude regions, in drought. The ensemble mean of the climate model simulations did not simulate the continuation of the drought in these years, suggesting that the termination of the drought was largely unpredictable in terms of global ocean conditions. The global context of the most recent, turn of the century, drought is compared to the five prior persistent North American droughts in the instrumental record from the mid-nineteenth century on. A classic La Niña pattern of ocean temperature in the Pacific is common to all. A cold Indian Ocean, also typical of La Niña, is common to all five prior droughts, but not the most recent one. Except in southern South America the global pattern of precipitation anomalies of the turn of the century drought is similar to that during the five prior droughts. These comparisons suggest that the earlier period of this most recent drought is the latest in a series of multiyear droughts forced by persistent changes in tropical Pacific Ocean temperatures. Warm tropical North Atlantic Ocean temperatures may play a secondary role.


2006 ◽  
Vol 19 (12) ◽  
pp. 2801-2817 ◽  
Author(s):  
Sang-Ik Shin ◽  
Prashant D. Sardeshmukh ◽  
Robert S. Webb ◽  
Robert J. Oglesby ◽  
Joseph J. Barsugli

Abstract Paleoclimatic evidence suggests that during the mid-Holocene epoch (about 6000 yr ago) North America and North Africa were significantly drier and wetter, respectively, than at present. Modeling efforts to attribute these differences to changes in orbital parameters and greenhouse gas (GHG) levels have had limited success, especially over North America. In this study, the importance of a possibly cooler tropical Pacific Ocean during the epoch (akin to a permanent La Niña–like perturbation to the present climate) in causing these differences is emphasized. Systematic sets of atmospheric general circulation model experiments, with prescribed sea surface temperatures (SSTs) in the tropical Pacific basin and an interactive mixed layer ocean elsewhere, are performed. Given the inadequacies of current fully coupled climate models in simulating the tropical Pacific climate, this intermediate coupling model configuration is argued to be more suitable for quantifying the contributions of the altered orbital forcing, GHG levels, and tropical Pacific SST conditions to the different mid-Holocene climates. The simulated responses in this configuration are in fact generally more consistent with the available evidence from paleovegetation and sedimentary records. Coupling to the mixed layer ocean enhances the wind–evaporation–SST feedback over the tropical Atlantic Ocean. The net response to the orbital changes is to shift the North Atlantic intertropical convergence zone (ITCZ) northward, and make North Africa wetter. The response to the reduced GHG levels opposes, but does not eliminate, these changes. The northward-shifted ITCZ also blocks the moisture supply from the Gulf of Mexico into North America. This drying tendency is greatly amplified by the local response to La Niña–like conditions in the tropical Pacific. Consistent with the paleoclimatic evidence, the simulated North American drying is also most pronounced in the growing (spring) season.


2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2020 ◽  
Vol 16 (1) ◽  
pp. 199-209 ◽  
Author(s):  
Yongyun Hu ◽  
Yan Xia ◽  
Zhengyu Liu ◽  
Yuchen Wang ◽  
Zhengyao Lu ◽  
...  

Abstract. The Pacific–North American (PNA) teleconnection is one of the most important climate modes in the present climate condition, and it enables climate variations in the tropical Pacific to exert a significant influence on North America. Here, we show climate simulations in which the PNA teleconnection was largely distorted or broken at the Last Glacial Maximum (LGM). The distorted PNA is caused by a split in the westerly jet stream, which is ultimately forced by the large, thick Laurentide ice sheet that was present at the LGM. Changes in the jet stream greatly alter the extratropical waveguide, distorting wave propagation from the North Pacific to North America. The distorted PNA suggests that climate variability in the tropical Pacific, notably El Niño–Southern Oscillation (ENSO), would have little direct impact on North American climate at the LGM.


2019 ◽  
Vol 46 (21) ◽  
pp. 12165-12172 ◽  
Author(s):  
Cong Guan ◽  
Shijian Hu ◽  
Michael J. McPhaden ◽  
Fan Wang ◽  
Shan Gao ◽  
...  

2017 ◽  
Vol 30 (10) ◽  
pp. 3635-3654 ◽  
Author(s):  
Di Dong ◽  
Jianping Li ◽  
Lidou Huyan ◽  
Jiaqing Xue

Abstract The atmospheric perturbation potential energy (PPE) over the tropical Pacific is calculated and analyzed in a composite ENSO cycle. The PPE over the tropical Pacific troposphere increases during El Niño and decreases during La Niña, displaying two centers symmetrical about the equator and delaying the central–eastern Pacific SST anomaly by two months. Generated from atmospheric diabatic heating, the smaller part of PPE in the lower troposphere varies synchronously with the central–eastern Pacific SST through sensible heating, while the larger part of PPE lies in the mid- and upper troposphere and lags the central–eastern Pacific SST about one season because of latent heat release. As the tropical Pacific PPE peaks during the boreal late winter in an El Niño event, two anticyclones form in the upper troposphere as a result of the Gill model response. More PPE is converted to atmospheric kinetic energy (KE) above the central–western Pacific, but less over the eastern Pacific, leading to intensified Hadley circulations over the central–western Pacific and weakened Hadley circulations over the eastern Pacific. The strengthened Hadley circulations cause surface easterly wind bursts through KE convergence in the western equatorial Pacific, which may trigger a La Niña event. The reverse situation occurs during La Niña. Thus, the response of the Hadley circulations in the central–western Pacific provides a negative feedback during the ENSO cycle.


2012 ◽  
Vol 25 (14) ◽  
pp. 5102-5118 ◽  
Author(s):  
Stergios Misios ◽  
Hauke Schmidt

Abstract It is debated whether the response of the tropical Pacific Ocean to the 11-yr solar cycle forcing resembles a La Niña– or El Niño–like signal. To address this issue, ensemble simulations employing an atmospheric general circulation model with and without ocean coupling are conducted. The coupled simulations show no evidence for a La Niña–like cooling in solar maxima. Instead, the tropical sea surface temperature rises almost in phase with the 11-yr solar cycle. A basinwide warming of about 0.1 K is simulated in the tropical Pacific, whereas the warming in the tropical Indian and Atlantic Oceans is weaker. In the western Pacific, the region of deep convection shifts to the east, thus reducing the surface easterlies. This shift is independent of the ocean coupling because deep convection moves to the east in the uncoupled simulations too. The reduced surface easterlies cool the subsurface but warm the surface due to the reduction of heat transport divergence. The latter mechanism operates together with water vapor feedback, resulting in a stronger tropical Pacific warming relative to the warming over the tropical Indian and Atlantic Oceans. These results suggest that the atmospheric response to the 11-yr solar cycle drives the tropical Pacific response, which is amplified by atmosphere–ocean feedbacks operating on decadal time scales. Based on the coupled simulations, it is concluded that the tropical Pacific Ocean should warm when the sun is more active.


PAGES news ◽  
2006 ◽  
Vol 14 (2) ◽  
pp. 12-14
Author(s):  
Amy C Clement ◽  
Julien Emile-Geay ◽  
Richard Seager ◽  
Mark Cane ◽  
Michael N Evans

Sign in / Sign up

Export Citation Format

Share Document