Analysis of the ENSO Cycle in the NCEP Coupled Forecast Model

2007 ◽  
Vol 20 (7) ◽  
pp. 1265-1284 ◽  
Author(s):  
Qin Zhang ◽  
Arun Kumar ◽  
Yan Xue ◽  
Wanqiu Wang ◽  
Fei-Fei Jin

Abstract Simulations from the National Centers for Environmental Prediction (NCEP) coupled model are analyzed to document and understand the behavior of the evolution of the El Niño–Southern Oscillation (ENSO) cycle. The analysis is of importance for two reasons: 1) the coupled model used in this study is also used operationally to provide model-based forecast guidance on a seasonal time scale, and therefore, an understanding of the ENSO mechanism in this particular coupled system could also lead to an understanding of possible biases in SST predictions; and 2) multiple theories for ENSO evolution have been proposed, and coupled model simulations are a useful test bed for understanding the relative importance of different ENSO mechanisms. The analyses of coupled model simulations show that during the ENSO evolution the net surface heat flux acts as a damping mechanism for the mixed-layer temperature anomalies, and positive contribution from the advection terms to the ENSO evolution is dominated by the linear advective processes. The subsurface temperature–SST feedback, referred to as thermocline feedback in some theoretical literature, is found to be the primary positive feedback, whereas the advective feedback by anomalous zonal currents and the thermocline feedback are the primary sources responsible for the ENSO phase transition in the model simulation. The basic mechanisms for the model-simulated ENSO cycle are thus, to a large extent, consistent with those highlighted in the recharge oscillator. The atmospheric anticyclone (cyclone) over the western equatorial northern Pacific accompanied by a warm (cold) phase of the ENSO, as well as the oceanic Rossby waves outside of 15°S–15°N and the equatorial higher-order baroclinic modes, all appear to play minor roles in the model ENSO cycles.

2005 ◽  
Vol 133 (6) ◽  
pp. 1574-1593 ◽  
Author(s):  
Wanqiu Wang ◽  
Suranjana Saha ◽  
Hua-Lu Pan ◽  
Sudhir Nadiga ◽  
Glenn White

Abstract A new global coupled atmosphere–ocean forecast system model (CFS03) has recently been developed at the National Centers for Environmental Prediction (NCEP). The new coupled model consists of a T62L64 version of the operational NCEP Atmospheric Global Forecast System model and the Geophysical Fluid Dynamics Laboratory Modular Ocean Model version 3, and is expected to replace the current NCEP operational coupled seasonal forecast model. This study assesses the performance of the new coupled model in simulating El Niño–Southern Oscillation (ENSO), which is considered to be a desirable feature for models used for seasonal prediction. The diagnoses indicate that the new coupled model simulates ENSO variability with realistic frequency. The amplitude of the simulated ENSO is similar to that of the observed strong events, but the ENSO events in the simulation occur more regularly than in observations. The model correctly simulates the observed ENSO seasonal phase locking with the peak amplitude near the end of the year. On average, however, simulated warm events tend to start about 3 months earlier and persist longer than observed. The simulated ENSO is consistent with the delayed oscillator, recharge oscillator, and advective–reflective oscillator theories, suggesting that each of these mechanisms may operate at the same time during the ENSO cycle. The diagnoses of the simulation indicate that the model may be suitable for real-time prediction of ENSO.


2018 ◽  
Vol 31 (8) ◽  
pp. 2995-3008 ◽  
Author(s):  
Longhui Li ◽  
Yingping Wang ◽  
Vivek K. Arora ◽  
Derek Eamus ◽  
Hao Shi ◽  
...  

Abstract Water and carbon fluxes simulated by 12 Earth system models (ESMs) that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) over several recent decades were evaluated using three functional constraints that are derived from both model simulations, or four global datasets, and 736 site-year measurements. Three functional constraints are ecosystem water-use efficiency (WUE), light-use efficiency (LUE), and the partitioning of precipitation P into evapotranspiration (ET) and runoff based on the Budyko framework. Although values of these three constraints varied significantly with time scale and should be quite conservative if being averaged over multiple decades, the results showed that both WUE and LUE simulated by the ensemble mean of 12 ESMs were generally lower than the site measurements. Simulations by the ESMs were generally consistent with the broad pattern of energy-controlled ET under wet conditions and soil water-controlled ET under dry conditions, as described by the Budyko framework. However, the value of the parameter in the Budyko framework ω, obtained from fitting the Budyko curve to the ensemble model simulation (1.74), was larger than the best-fit value of ω to the observed data (1.28). Globally, the ensemble mean of multiple models, although performing better than any individual model simulations, still underestimated the observed WUE and LUE, and overestimated the ratio of ET to P, as a result of overestimation in ET and underestimation in gross primary production (GPP). The results suggest that future model development should focus on improving the algorithms of the partitioning of precipitation into ecosystem ET and runoff, and the coupling of water and carbon cycles for different land-use types.


2011 ◽  
Vol 29 (3) ◽  
pp. 529-540 ◽  
Author(s):  
J. Zhu ◽  
G. Zhou ◽  
R.-H. Zhang ◽  
Z. Sun

Abstract. The role of decadal changes in ocean thermal structure in modulating El Niño/Southern Oscillation (ENSO) properties was examined using a hybrid coupled model (HCM), consisting of a statistical atmospheric model and an oceanic general circulation model (OGCM) with an explicitly embedded empirical parameterization for the temperature of subsurface water entrained into the mixed layer (Te), which was constructed via an EOF analysis of model-based historical data. Using the empirical Te models constructed from two subperiods, 1963–1979 (Te63−79) and 1980–1996 (Te80−96), the coupled system exhibits striking different properties of interannual variability, including oscillation periods and the propagation characteristic of sea surface temperature anomalies (SSTAs) along the equator. In the Te63−79 run, the model features a 2–3 yr oscillation and a westward propagation of SSTAs along the equator, while in the Te80−96 run, it is characterized by a 4–5 yr oscillation and an eastward propagation. Furthermore, a Lag Covariance Analysis (LCOA) was utilized to illustrate the leading physical processes responsible for decadal change in SST. It is shown that the change in the structure of Te acts to modulate the relative strength of the zonal advective and thermocline feedbacks in the coupled system, leading to changes in ENSO properties. Two additional sensitive experiments were conducted to further illustrate the respective roles of the changes in ocean mean states and in Te in modulating ENSO behaviors. These decadal changes in the simulated ENSO properties are consistent with the observed shift occurred in the late 1970s and a previous simulation performed with an intermediate coupled model (ICM) described in Zhang and Busalacchi (2005), indicating a dominant role Te plays in decadal ENSO changes.


2013 ◽  
Vol 26 (4) ◽  
pp. 1268-1285 ◽  
Author(s):  
Arun Kumar ◽  
Hui Wang ◽  
Wanqiu Wang ◽  
Yan Xue ◽  
Zeng-Zhen Hu

Abstract Based on analysis of a coupled model simulations with and without variability associated with the El Niño–Southern Oscillation (ENSO), it is demonstrated that knowing the current value of the ocean surface temperature–based index of the Pacific decadal oscillation (the OPDO index), and the corresponding atmospheric teleconnection pattern, does not add a predictive value for atmospheric anomalies in subsequent months. This is because although the OPDO index evolves on a slow time scale, it does not constrain the atmospheric variability in subsequent months, which retains its character of white noise stochastic variability and remains largely unpredictable. Further, the OPDO adds little to the atmospheric predictability originating from the tropical Pacific during ENSO years.


2013 ◽  
Vol 26 (13) ◽  
pp. 4431-4446 ◽  
Author(s):  
Baird Langenbrunner ◽  
J. David Neelin

Abstract The accurate representation of precipitation is a recurring issue in climate models. El Niño–Southern Oscillation (ENSO) precipitation teleconnections provide a test bed for comparison of modeled to observed precipitation. The simulation quality for the atmospheric component of models in the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) is assessed here, using the ensemble of runs driven by observed sea surface temperatures (SSTs). Simulated seasonal precipitation teleconnection patterns are compared to observations during 1979–2005 and to the ensemble of CMIP phase 3 (CMIP3). Within regions of strong observed teleconnections (equatorial South America, the western equatorial Pacific, and a southern section of North America), there is little improvement in the CMIP5 ensemble relative to CMIP3 in amplitude and spatial correlation metrics of precipitation. Spatial patterns within each region exhibit substantial departures from observations, with spatial correlation coefficients typically less than 0.5. However, the atmospheric models do considerably better in other measures. First, the amplitude of the precipitation response (root-mean-square deviation over each region) is well estimated by the mean of the amplitudes from the individual models. This is in contrast with the amplitude of the multimodel ensemble mean, which is systematically smaller (by about 30%–40%) in the selected teleconnection regions. Second, high intermodel agreement on teleconnection sign provides a good predictor for high model agreement with observed teleconnections. The ability of the model ensemble to yield amplitude and sign measures that agree with the observed signal for ENSO precipitation teleconnections lends supporting evidence for the use of corresponding measures in global warming projections.


2006 ◽  
Vol 6 ◽  
pp. 29-33 ◽  
Author(s):  
J. Brown ◽  
M. Collins ◽  
A. Tudhope

Abstract. The sensitivity of El Niño-Southern Oscillation (ENSO) to changes in mean climate is investigated for simulations of pre-industrial and mid-Holocene (6000 years before present) climate using the Hadley Centre coupled atmosphere-ocean model, HadCM3. Orbitally-forced changes in insolation in the mid-Holocene produce changes in seasonality which may alter ENSO amplitude and frequency. The model simulations are compared with mid-Holocene fossil coral oxygen isotope records from the western Pacific Warm Pool. The coral records imply a reduction of around 60% in the amplitude of interannual variability associated with ENSO in the mid-Holocene, while the model simulates a smaller reduction in ENSO amplitude of around 10%. The model also simulates a slight shift to longer period variability and a weakening of ENSO phase-locking to the seasonal cycle in the mid-Holocene. There is little change in the pattern of ENSO tropical precipitation teleconnections in the simulated mid-Holocene climate.


2010 ◽  
Vol 67 (2) ◽  
pp. 529-542 ◽  
Author(s):  
Aaron F. Z. Levine ◽  
Fei-Fei Jin

Abstract The conceptual El Niño–Southern Oscillation (ENSO) recharge oscillator model is used to study the linear stability of ENSO under state-dependent noise forcing. The analytical framework developed by Jin et al. is extended to more fully study noise-induced instability of ENSO. It is shown that in addition to the noise-induced positive contribution to the growth rate of the ensemble mean (first moment) evolution of the ENSO cycle, there is also a noise-induced instability for the ensemble spread (second moment). These growth rates continue to increase as the strength of the multiplicative noise increases. In both the analytical solution and the numerical model, the criticality threshold for instability of the second moment occurs at a lower value of the parameter that measures multiplicative forcing than the threshold for the first moment. The noise-induced instability not only enhances ENSO activity but also results in a large ensemble spread and thus may reduce the effectiveness of ENSO prediction. As in the additive noise forcing case, the low-frequency variability in the forcing is the important part for forcing El Niño events and the high-frequency forcing alone cannot effectively excite ENSO.


2018 ◽  
Vol 31 (14) ◽  
pp. 5707-5729 ◽  
Author(s):  
Weichen Tao ◽  
Gang Huang ◽  
Renguang Wu ◽  
Kaiming Hu ◽  
Pengfei Wang ◽  
...  

Abstract The present study documents the biases of summertime northwest Pacific (NWP) atmospheric circulation anomalies during the decaying phase of ENSO and investigates their plausible reasons in 32 models from phase 5 of the Coupled Model Intercomparison Project. Based on an intermodel empirical orthogonal function (EOF) analysis of El Niño–Southern Oscillation (ENSO)-related 850-hPa wind anomalies, the dominant modes of biases are extracted. The first EOF mode, explaining 21.3% of total intermodel variance, is characterized by a cyclone over the NWP, indicating a weaker NWP anticyclone. The cyclone appears to be a Rossby wave response to unrealistic equatorial western Pacific (WP) sea surface temperature (SST) anomalies related to excessive equatorial Pacific cold tongue in the models. On one hand, the cold SST biases increase the mean zonal SST gradient, which further intensifies warm zonal advection, favoring the development and persistence of equatorial WP SST anomalies. On the other hand, they reduce the anomalous convection caused by ENSO-related warming, and the resultant increase in downward shortwave radiation contributes to the SST anomalies there. The second EOF mode, explaining 18.6% of total intermodel variance, features an anticyclone over the NWP with location shifted northward. The related SST anomalies in the Indo-Pacific sector show a tripole structure, with warming in the tropical Indian Ocean and equatorial central and eastern Pacific and cooling in the NWP. The Indo-Pacific SST anomalies are highly controlled by ENSO amplitude, which is determined by the intensity of subtropical cells via the adjustment of meridional and vertical advection in the models.


Sign in / Sign up

Export Citation Format

Share Document