scholarly journals Influence of the Madden–Julian Oscillation on Southern African Summer Rainfall

2007 ◽  
Vol 20 (16) ◽  
pp. 4227-4242 ◽  
Author(s):  
B. Pohl ◽  
Y. Richard ◽  
N. Fauchereau

Abstract Composite maps of outgoing longwave radiation (OLR) anomalies over the Madden–Julian oscillation (MJO) cycle show marked intraseasonal fluctuations over southern Africa (south of 15°S). Large-scale convective clusters are seen to propagate eastward and then northward over the continent, mainly between 10° and 20°S. The corresponding response of the rainfall field presents the alternation, over the cycle, of dry and humid phases, which are both significant. Moisture flux anomalies indicate an intraseasonal modulation of the midtropospheric easterly flow over the Congo basin at 700 hPa; these fluctuations are coupled to meridional flux anomalies that extend from the tropical to the subtropical austral latitudes, and favor occurrences of wet or dry conditions over the domain. Though statistically significant, the influence of the MJO on southern Africa is however not homogeneous spatially, and only the tropical areas exhibit sharp periodicities in the 30–60-day period range. The OLR dipole observed in previous studies at the interannual and synoptic time scales between the hinterland parts of southern Africa and the southwestern Indian Ocean in the north of Madagascar is investigated next, as it also shows strong fluctuations at the intraseasonal time scale. The study points out that the dipole is partly influenced by the MJO, though the strongest periodicities are found for slightly longer periods (35–80 days) than those typically associated with the oscillation. The forcing of the MJO on the OLR dipole, though significant, remains thus partial.

2020 ◽  
Vol 33 (19) ◽  
pp. 8579-8602
Author(s):  
Rachel James ◽  
Neil C. G. Hart ◽  
Callum Munday ◽  
Chris J. C. Reason ◽  
Richard Washington

AbstractThere are increasing efforts to use climate model output for adaptation planning, but meanwhile there is often limited understanding of how models represent regional climate. Here we analyze the simulation in global coupled climate models of a key rainfall-generating mechanism over southern Africa: tropical temperate troughs (TTTs). An image-processing algorithm is applied to outgoing longwave radiation data from satellites and models to create TTT event sets. All models investigated produce TTTs with similar circulation features to observed. However, there are large differences among models in the number, intensity, and preferred longitude of events. Five groups of models are identified. The first group generates too few TTTs, and relatively dry conditions over southern Africa compared to other models. A second group generates more TTTs and wet biases. The contrast between these two groups suggests that the number of TTTs could explain intermodel variations in climatological rainfall. However, there is a third group of models that simulate up to 92% more TTTs than observed, but do not have large rainfall biases, as each TTT event is relatively weak. Finally, there are a further two groups that concentrate TTTs over the subcontinent or the ocean, respectively. These distinctions between models are associated with the amount of convective activity in the Congo Basin, the magnitude of moisture fluxes into southern Africa, and the degree of zonal asymmetry in upper-level westerly flow. Model development focused on tropical convection and the representation of orography is needed for improved simulation of TTTs, and therefore southern African rainfall.


2019 ◽  
Vol 147 (4) ◽  
pp. 1415-1428 ◽  
Author(s):  
Imme Benedict ◽  
Karianne Ødemark ◽  
Thomas Nipen ◽  
Richard Moore

Abstract A climatology of extreme cold season precipitation events in Norway from 1979 to 2014 is presented, based on the 99th percentile of the 24-h accumulated precipitation. Three regions, termed north, west, and south are identified, each exhibiting a unique seasonal distribution. There is a proclivity for events to occur during the positive phase of the NAO. The result is statistically significant at the 95th percentile for the north and west regions. An overarching hypothesis of this work is that anomalous moisture flux, or so-called atmospheric rivers (ARs), are integral to extreme precipitation events during the Norwegian cold season. An objective analysis of the integrated vapor transport illustrates that more than 85% of the events are associated with ARs. An empirical orthogonal function and fuzzy cluster technique is used to identify the large-scale weather patterns conducive to the moisture flux and extreme precipitation. Five days before the event and for each of the three regions, two patterns are found. The first represents an intense, southward-shifted jet with a southwest–northeast orientation. The second identifies a weak, northward-shifted, zonal jet. As the event approaches, regional differences become more apparent. The distinctive flow pattern conducive to orographically enhanced precipitation emerges in the two clusters for each region. For the north and west regions, this entails primarily zonal flow impinging upon the south–north-orientated topography, the difference being the latitude of the strong flow. In contrast, the south region exhibits a significant southerly component to the flow.


2018 ◽  
Vol 31 (14) ◽  
pp. 5731-5748 ◽  
Author(s):  
Casey D. Burleyson ◽  
Samson M. Hagos ◽  
Zhe Feng ◽  
Brandon W. J. Kerns ◽  
Daehyun Kim

Abstract The characteristics of Madden–Julian oscillation (MJO) events that strengthen and weaken over the Maritime Continent (MC) are examined. The real-time multivariate MJO (RMM) index is used to assess changes in global MJO amplitude over the MC. The MJO weakens at least twice as often as it strengthens over the MC, with weakening MJOs being twice as likely during El Niño compared to La Niña years and the reverse for strengthening events. MJO weakening shows a pronounced seasonal cycle that has not been previously documented. During the Northern Hemisphere (NH) summer and fall the RMM index can strengthen over the MC. MJOs that approach the MC during the NH winter typically weaken according to the RMM index. This seasonal cycle corresponds to whether the MJO crosses the MC primarily north or south of the equator. Because of the seasonal cycle, weakening MJOs are characterized by positive sea surface temperature and moist-static energy anomalies in the Southern Hemisphere (SH) of the MC compared to strengthening events. Analysis of the outgoing longwave radiation (OLR) MJO index (OMI) shows that MJO precipitation weakens when it crosses the MC along the equator. A possible explanation of this based on previous results is that the MJO encounters more landmasses and taller mountains when crossing along the equator or in the SH. The new finding of a seasonal cycle in MJO weakening over the MC highlights the importance of sampling MJOs throughout the year in future field campaigns designed to study MJO–MC interactions.


2018 ◽  
Vol 31 (19) ◽  
pp. 7789-7802 ◽  
Author(s):  
Sugata Narsey ◽  
Michael J. Reeder ◽  
Christian Jakob ◽  
Duncan Ackerley

The simulation of northern Australian wet season rainfall bursts by coupled climate models is evaluated. Individual models produce vastly different amounts of precipitation over the north of Australia during the wet season, and this is found to be related to the number of bursts they produce. The seasonal cycle of bursts is found to be poor in most of the models evaluated. It is known that northern Australian wet season bursts are often associated with midlatitude Rossby wave packets and their surface signature as they are refracted toward the tropics. The relationship between midlatitude waves and the initiation of wet season bursts is simulated well by the models evaluated. Another well-documented influence on the initiation of northern Australian wet season bursts is the Madden–Julian oscillation (MJO). No model adequately simulated the tropical outgoing longwave radiation temporal–spatial patterns seen in the reanalysis-derived OLR. This result suggests that the connection between the MJO and the initiation of northern Australian wet season bursts in models is poor.


1997 ◽  
Vol 21 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Timothy C. Partridge

Since the end of the Cretaceous, Africa's latitudinal drift has been relatively small and has not significantly modified the general pattern of stepwise cooling and aridification that has characterized the Cainozoic era. Tectonic uplift has, in contrast, strongly influenced regional climates in east and southern Africa, especially during the late Neogene, and has accentuated the east-west moisture gradient which has prevailed, with minor interruptions, since the Oligocene. In common with most other midlatitude regions, southern African environments responded dramatically to the global episode of cooling and drying between 2.8 and 2.6 myr which ushered in the cyclical fluctuations of the Pleistocene. The establishment of a winter rainfall regime in the southwestern part of the subcontinent probably dates from around 2.6 myr. In the north east, new proxy data spanning the last 200 000 years indicate that summer rainfall varied in relation to receipts of solar insolation at precessional frequencies. Superimposed upon these cyclical changes were a number of less regular variations which, on the basis of the larger body of evidence available for the Holocene, elicited specific localized responses. These diachronistic changes argue for the involvement of factors other than solar insolation alone in the more recent evolution of southern African climates.


2011 ◽  
Vol 24 (24) ◽  
pp. 6261-6282 ◽  
Author(s):  
Aneesh C. Subramanian ◽  
Markus Jochum ◽  
Arthur J. Miller ◽  
Raghu Murtugudde ◽  
Richard B. Neale ◽  
...  

Abstract This study assesses the ability of the Community Climate System Model, version 4 (CCSM4) to represent the Madden–Julian oscillation (MJO), the dominant mode of intraseasonal variability in the tropical atmosphere. The U.S. Climate Variability and Predictability (CLIVAR) MJO Working Group’s prescribed diagnostic tests are used to evaluate the model’s mean state, variance, and wavenumber–frequency characteristics in a 20-yr simulation of the intraseasonal variability in zonal winds at 850 hPa (U850) and 200 hPa (U200), and outgoing longwave radiation (OLR). Unlike its predecessor, CCSM4 reproduces a number of aspects of MJO behavior more realistically. The CCSM4 produces coherent, broadbanded, and energetic patterns in eastward-propagating intraseasonal zonal winds and OLR in the tropical Indian and Pacific Oceans that are generally consistent with MJO characteristics. Strong peaks occur in power spectra and coherence spectra with periods between 20 and 100 days and zonal wavenumbers between 1 and 3. Model MJOs, however, tend to be more broadbanded in frequency than in observations. Broad-scale patterns, as revealed in combined EOFs of U850, U200, and OLR, are remarkably consistent with observations and indicate that large-scale convergence–convection coupling occurs in the simulated MJO. Relations between MJO in the model and its concurrence with other climate states are also explored. MJO activity (defined as the percentage of time the MJO index exceeds 1.5) is enhanced during El Niño events compared to La Niña events, both in the model and observations. MJO activity is increased during periods of anomalously strong negative meridional wind shear in the Asian monsoon region and also during strong negative Indian Ocean zonal mode states, in both the model and observations.


1992 ◽  
Vol 33 (1) ◽  
pp. 1-35 ◽  
Author(s):  
Elizabeth A. Eldredge

The so-called ‘mfecane’ has been explained in many ways by historians, but never adequately. Julian Cobbing has absolved the Zulu of culpability for ongoing regional conflicts, but his work is severely flawed in its use of evidence. Cobbing is incorrect to argue that the Delagoa Bay slave trade existed on a large scale prior to the disruptions beginning in 1817, and European slaving therefore cannot have been a root cause of political turmoil and change, as he claims. Cobbing correctly identifies European-sponsored slave-raiding as a major cause of violence across the north-eastern Cape Frontier, but his accusations of missionary involvement are false. Jeff Guy's interpretation of the rise of the Zulu kingdom based on environmental factors is inadequate because he examined only stock-keeping and not arable land use, which led him to false conclusions about demography and politics. In this paper I argue that the socio-political changes and associated demographic turmoil and violence of the early nineteenth century in southern Africa were the result of a complex interaction between factors governed by the physical environment and local patterns of economic and political organization. Increasing inequalities within and between societies coupled with a series of environmental crises transformed long-standing competition over natural resources and trade in south-eastern Africa into violent struggles.


2004 ◽  
Vol 17 (22) ◽  
pp. 4387-4406 ◽  
Author(s):  
Hye-Kyung Cho ◽  
Kenneth P. Bowman ◽  
Gerald R. North

Abstract Four years of outgoing longwave radiation (OLR) and rainfall data from the Tropical Rainfall Measuring Mission (TRMM) are investigated to find the dominant large-scale wave modes in the Tropics. By using space– time cross-section analysis and spectral analysis, the longitudinal and latitudinal behaviors of the overall waves and the dominant waves are observed. Despite the noisy nature of precipitation data and the limited sampling by the TRMM satellite, pronounced peaks are found for Kelvin waves, n = 1 equatorial Rossby waves (ER), and mixed Rossby–gravity waves (MRG). Madden–Julian oscillation (MJO) and tropical depression (TD)-type disturbances are also detected. The seasonal evolution of these waves is investigated. An appendix includes a study of sampling and aliasing errors due to the peculiar space–time sampling pattern of TRMM. It is shown that the waves detected in this study are not artifacts of these sampling features. The results presented here are compared with previous studies. Consistency with their results gives confidence in the TRMM data for wave studies. The results from this study can be utilized for modeling and testing theories. Also, it may be useful for the future users of the TRMM data to understand the nature of the TRMM satellite sampling.


2014 ◽  
Vol 142 (5) ◽  
pp. 1697-1715 ◽  
Author(s):  
George N. Kiladis ◽  
Juliana Dias ◽  
Katherine H. Straub ◽  
Matthew C. Wheeler ◽  
Stefan N. Tulich ◽  
...  

Abstract Two univariate indices of the Madden–Julian oscillation (MJO) based on outgoing longwave radiation (OLR) are developed to track the convective component of the MJO while taking into account the seasonal cycle. These are compared with the all-season Real-time Multivariate MJO (RMM) index of Wheeler and Hendon derived from a multivariate EOF of circulation and OLR. The gross features of the OLR and circulation of composite MJOs are similar regardless of the index, although RMM is characterized by stronger circulation. Diversity in the amplitude and phase of individual MJO events between the indices is much more evident; this is demonstrated using examples from the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign and the Year of Tropical Convection (YOTC) virtual campaign. The use of different indices can lead to quite disparate conclusions concerning MJO timing and strength, and even as to whether or not an MJO has occurred. A disadvantage of using daily OLR as an EOF basis is that it is a much noisier field than the large-scale circulation, and filtering is necessary to obtain stable results through the annual cycle. While a drawback of filtering is that it cannot be done in real time, a reasonable approximation to the original fully filtered index can be obtained by following an endpoint smoothing method. When the convective signal is of primary interest, the authors advocate the use of satellite-based metrics for retrospective analysis of the MJO for individual cases, as well as for the analysis of model skill in initiating and evolving the MJO.


Author(s):  
Clive E. Dorman ◽  
Sebastian W. Hoch ◽  
Ismail Gultepe ◽  
Qing Wang ◽  
Ryan T. Yamaguchi ◽  
...  

AbstractThe goal of this work is to summarize synoptic meteorological conditions during the Coastal Fog (C-FOG) field project that took place onshore and offshore of the Avalon Peninsula, Newfoundland, from 25 August until 8 October 2018. Visibility was measured at three locations at the Ferryland supersite that are about 1 km from each other, and at two additional sites 66 and 76 km to the north. Supporting meteorological measurements included surface winds, air temperature, humidity, pressure, radiation, cloud-base height, and atmospheric thermodynamic profiles from radiosonde soundings. Statistics are presented for surface measurements during fog events including turbulence kinetic energy, net longwave radiation, visibility, and precipitation. Eleven fog events are observed at Ferryland. Each significant fog event is related to a large-scale cyclonic system. The longest fog event is due to interaction of a northern deep low and a tropical cyclone. Fog occurrence is also examined across Atlantic Canada by including Sable Island, Yarmouth, Halifax, and Sydney. It is concluded that at Ferryland, all significant fog events occur under a cyclonic system while at Sable Island all significant fog events occur under both cyclonic and anticyclonic systems. The fog-formation mechanism involves cloud lowering and stratus broadening or only stratus broadening for the cyclonic systems while for the anticyclonic systems it is stratus broadening or radiation. Although widely cited as the main cause of fog in Atlantic Canada, advection fog is not found to be the primary or sole fog type in the events examined.


Sign in / Sign up

Export Citation Format

Share Document