scholarly journals New Allometric Equations for Arctic Shrubs and Their Application for Calculating the Albedo of Surfaces with Snow and Protruding Branches

2020 ◽  
Vol 21 (11) ◽  
pp. 2581-2594
Author(s):  
M. Belke-Brea ◽  
F. Domine ◽  
S. Boudreau ◽  
G. Picard ◽  
M. Barrere ◽  
...  

AbstractArctic shrubs reduce surface albedo in winter when branches protrude above the snow. To calculate the albedo of those mixed surfaces, the branch area index (BAI) of Arctic shrubs needs to be known. Moreover, an exposed-vegetation function is required to determine the BAI for protruding branches only. This study used a structural analysis of 30 Betula glandulosa shrubs, sampled near Umiujaq, northern Quebec, to (i) establish an allometric relationship between shrub height and BAI and (ii) determine a specific exposed-vegetation function for Arctic shrubs. The spectral albedo (400–1080 nm) of mixed surfaces was then simulated with the equations derived from this study and validated with in situ measured spectra. Shrubs were sampled from two sites, one along the coast and the other in a nearby valley. The shrub height–BAI relationship varied between both sites. BAI values of shrubs growing in the wind-sheltered valley were 30%–50% lower. The exposed-vegetation function obtained here differed from the linear functions found in the literature. The linear functions strongly overestimated the BAI of exposed branches. Albedo was well simulated with an accuracy of 3% when using an allometric relationship adapted to the environmental conditions of our study site. However, simulated albedo values were consistently higher than field measurements, probably because radiation absorbed by impurities and buried branches was neglected in the model. We conclude that specific exposed-vegetation and allometric equations need to be implemented in models to accurately simulate the albedo of mixed snow–shrub surfaces.

Author(s):  
Tonny Oyana ◽  
Ellen Kayendeke ◽  
Samuel Adu-Prah

This study investigated the performance of leaf area index (LAI) and photosynthetically active radiation (PAR) in a mountain ecosystem. The authors hypothesized that significant spatial and temporal differences exist in LAI and PAR values in the Manafwa catchment on Mt. Elgon. This was accomplished through field measurements of actual LAI and PAR values of diverse vegetation types along a ~900m altitudinal gradient (1141–2029 masl) in the catchment. In-situ measurements were obtained from 841 micro-scale study plots in 28 sampling plots using high resolution LAI sensors. The findings showed a significant positive relationship exists between elevation and observed LAI (r = 0.45, p = 0.01). A regression model further shows that elevation and curvature of the landscape slope were highly significant (p < 0.00002) predictors of LAI. Finally, the authors detected significant spatial and temporal differences in LAI and PAR values in the study area. The study provides a critical basis for setting up long-term monitoring plans to understand mountain ecosystems and global climate change.


2017 ◽  
Vol 8 (1) ◽  
pp. 64-80 ◽  
Author(s):  
Tonny Oyana ◽  
Ellen Kayendeke ◽  
Samuel Adu-Prah

This study investigated the performance of leaf area index (LAI) and photosynthetically active radiation (PAR) in a mountain ecosystem. The authors hypothesized that significant spatial and temporal differences exist in LAI and PAR values in the Manafwa catchment on Mt. Elgon. This was accomplished through field measurements of actual LAI and PAR values of diverse vegetation types along a ~900m altitudinal gradient (1141–2029 masl) in the catchment. In-situ measurements were obtained from 841 micro-scale study plots in 28 sampling plots using high resolution LAI sensors. The findings showed a significant positive relationship exists between elevation and observed LAI (r = 0.45, p = 0.01). A regression model further shows that elevation and curvature of the landscape slope were highly significant (p < 0.00002) predictors of LAI. Finally, the authors detected significant spatial and temporal differences in LAI and PAR values in the study area. The study provides a critical basis for setting up long-term monitoring plans to understand mountain ecosystems and global climate change.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


2014 ◽  
pp. 147-153
Author(s):  
P. Orekhovsky

The review outlines the connection between E. Reinert’s book and the tradition of structural analysis. The latter allows for the heterogeneity of industries and sectors of the economy, as well as for the effects of increasing and decreasing returns. Unlike the static theory of international trade inherited from the Ricardian analysis of comparative advantage, this approach helps identify the relationship between trade, production, income and population growth. Reinert rehabilitates the “other canon” of economic theory associated with the mercantilist tradition, F. Liszt and the German historical school, as well as a reconside ration of A. Marshall’s analysis of increasing returns. Empirical illustrations given in the book reveal clear parallels with the path of Russian socio-economic development in the last twenty years.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4863
Author(s):  
Victor Dyomin ◽  
Alexandra Davydova ◽  
Igor Polovtsev ◽  
Alexey Olshukov ◽  
Nikolay Kirillov ◽  
...  

The paper presents an underwater holographic sensor to study marine particles—a miniDHC digital holographic camera, which may be used as part of a hydrobiological probe for accompanying (background) measurements. The results of field measurements of plankton are given and interpreted, their verification is performed. Errors of measurements and classification of plankton particles are estimated. MiniDHC allows measurement of the following set of background data, which is confirmed by field tests: plankton concentration, average size and size dispersion of individuals, particle size distribution, including on major taxa, as well as water turbidity and suspension statistics. Version of constructing measuring systems based on modern carriers of operational oceanography for the purpose of ecological diagnostics of the world ocean using autochthonous plankton are discussed. The results of field measurements of plankton using miniDHC as part of a hydrobiological probe are presented and interpreted, and their verification is carried out. The results of comparing the data on the concentration of individual taxa obtained using miniDHC with the data obtained by the traditional method using plankton catching with a net showed a difference of no more than 23%. The article also contains recommendations for expanding the potential of miniDHC, its purpose indicators, and improving metrological characteristics.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1131
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

This paper critically compares the use of laboratory tests against in situ tests combined with numerical seepage modeling to determine the hydraulic conductivity of natural soil deposits. Laboratory determination of hydraulic conductivity used the constant head permeability and oedometer tests on undisturbed Shelby tube and block soil samples. The auger hole method and Guelph permeameter tests were performed in the field. Groundwater table elevations in natural soil deposits with different hydraulic conductivity values were predicted using finite element seepage modeling and compared with field measurements to assess the various test results. Hydraulic conductivity values obtained by the auger hole method provide predictions that best match the groundwater table’s observed location at the field site. This observation indicates that hydraulic conductivity determined by the in situ test represents the actual conditions in the field better than that determined in a laboratory setting. The differences between the laboratory and in situ hydraulic conductivity values can be attributed to factors such as sample disturbance, soil anisotropy, fissures and cracks, and soil structure in addition to the conceptual and procedural differences in testing methods and effects of sample size.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna K. Liljedahl ◽  
Ina Timling ◽  
Gerald V. Frost ◽  
Ronald P. Daanen

AbstractShrub expansion has been observed across the Arctic in recent decades along with warming air temperatures, but tundra shrub expansion has been most pronounced in protected landscape positions such as floodplains, streambanks, water tracks, and gullies. Here we show through field measurements and laboratory analyses how stream hydrology, permafrost, and soil microbial communities differed between streams in late summer with and without tall shrubs. Our goal was to assess the causes and consequences of tall shrub expansion in Arctic riparian ecosystems. Our results from Toolik Alaska, show greater canopy height and density, and distinctive plant and soil microbial communities along stream sections that lose water into unfrozen ground (talik) compared to gaining sections underlain by shallow permafrost. Leaf Area Index is linearly related to the change in streamflow per unit stream length, with the densest canopies coinciding with increasingly losing stream sections. Considering climate change and the circumpolar scale of riparian shrub expansion, we suggest that permafrost thaw and the resulting talik formation and shift in streamflow regime are occurring across the Low Arctic.


2000 ◽  
Vol 3 (6) ◽  
pp. 591-596 ◽  
Author(s):  
Virpi V. Smith ◽  
Amanda J. Williams ◽  
Vas Novelli ◽  
Marian Malone

We report two infants with the acquired immunodeficiency syndrome (AIDS) and rectal bleeding due to cytomegalovirus (CMV) ileitis and colitis with minimal focal mucosal ulceration but with extensive leiomyolysis of the muscularis propria. Immunostaining and in situ hybridization for CMV showed numerous viral inclusions in the myocytes of the muscularis propria and vascular endothelium/smooth muscle with only occasional inclusions present in the muscularis mucosae. Colectomy was curative in one patient; in the other the bowel was only examined at postmortem.


Sign in / Sign up

Export Citation Format

Share Document