Intercomparison of Spatially Distributed Models for Predicting Surface Energy Flux Patterns during SMACEX

2005 ◽  
Vol 6 (6) ◽  
pp. 941-953 ◽  
Author(s):  
Wade T. Crow ◽  
Fuqin Li ◽  
William P. Kustas

Abstract The treatment of aerodynamic surface temperature in soil–vegetation–atmosphere transfer (SVAT) models can be used to classify approaches into two broad categories. The first category contains models utilizing remote sensing (RS) observations of surface radiometric temperature to estimate aerodynamic surface temperature and solve the terrestrial energy balance. The second category contains combined water and energy balance (WEB) approaches that simultaneously solve for surface temperature and energy fluxes based on observations of incoming radiation, precipitation, and micrometeorological variables. To date, few studies have focused on cross comparing model predictions from each category. Land surface and remote sensing datasets collected during the 2002 Soil Moisture–Atmosphere Coupling Experiment (SMACEX) provide an opportunity to evaluate and intercompare spatially distributed surface energy balance models. Intercomparison results presented here focus on the ability of a WEB-SVAT approach [the TOPmodel-based Land–Atmosphere Transfer Scheme (TOPLATS)] and an RS-SVAT approach [the Two-Source Energy Balance (TSEB) model] to accurately predict patterns of turbulent energy fluxes observed during SMACEX. During the experiment, TOPLATS and TSEB latent heat flux predictions match flux tower observations with root-mean-square (rms) accuracies of 67 and 63 W m−2, respectively. TSEB predictions of sensible heat flux are significantly more accurate with an rms accuracy of 22 versus 46 W m−2 for TOPLATS. The intercomparison of flux predictions from each model suggests that modeling errors for each approach are sufficiently independent and that opportunities exist for improving the performance of both models via data assimilation and model calibration techniques that integrate RS- and WEB-SVAT energy flux predictions.

2014 ◽  
Vol 15 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Cezar Kongoli ◽  
William P. Kustas ◽  
Martha C. Anderson ◽  
John M. Norman ◽  
Joseph G. Alfieri ◽  
...  

Abstract The utility of a snow–vegetation energy balance model for estimating surface energy fluxes is evaluated with field measurements at two sites in a rangeland ecosystem in southwestern Idaho during the winter of 2007: one site dominated by aspen vegetation and the other by sagebrush. Model parameterizations are adopted from the two-source energy balance (TSEB) modeling scheme, which estimates fluxes from the vegetation and surface substrate separately using remotely sensed measurements of land surface temperature. Modifications include development of routines to account for surface snowmelt energy flux and snow masking of vegetation. Comparisons between modeled and measured surface energy fluxes of net radiation and turbulent heat showed reasonable agreement when considering measurement uncertainties in snow environments and the simplified algorithm used for the snow surface heat flux, particularly on a daily basis. There was generally better performance over the aspen field site, likely due to more reliable input data of snow depth/snow cover. The model was robust in capturing the evolution of surface energy fluxes during melt periods. The model behavior was also consistent with previous studies that indicate the occurrence of upward sensible heat fluxes during daytime owing to solar heating of vegetation limbs and branches, which often exceeds the downward sensible heat flux driving the snowmelt. However, model simulations over aspen trees showed that the upward sensible heat flux could be reversed for a lower canopy fraction owing to the dominance of downward sensible heat flux over snow. This indicates that reliable vegetation or snow cover fraction inputs to the model are needed for estimating fluxes over snow-covered landscapes.


2014 ◽  
Vol 11 (12) ◽  
pp. 13479-13539 ◽  
Author(s):  
S.-H. Hong ◽  
J. M. H. Hendrickx ◽  
J. Kleissl ◽  
R. G. Allen ◽  
W. G. M. Bastiaanssen ◽  
...  

Abstract. Accurate information on the distribution of the surface energy balance components in arid riparian areas is needed for sustainable management of water resources as well as for a better understanding of water and heat exchange processes between the land surface and the atmosphere. Since the spatial and temporal distributions of these fluxes over large areas are difficult to determine from ground measurements alone, their prediction from remote sensing data is very attractive as it enables large area coverage and a high repetition rate. In this study the Surface Energy Balance Algorithm for Land (SEBAL) was used to estimate all the energy balance components in the arid riparian areas of the Middle Rio Grande Basin (New Mexico), San Pedro Basin (Arizona), and Owens Valley (California). We compare instantaneous and daily SEBAL fluxes derived from Landsat TM images to surface-based measurements with eddy covariance flux towers. This study presents evidence that SEBAL yields reliable estimates for actual evapotranspiration rates in riparian areas of the southwestern United States. The great strength of the SEBAL method is its internal calibration procedure that eliminates most of the bias in latent heat flux at the expense of increased bias in sensible heat flux.


2013 ◽  
Vol 10 (3) ◽  
pp. 3927-3972
Author(s):  
T. R. Xu ◽  
S. M. Liu ◽  
Z. W. Xu ◽  
S. Liang ◽  
L. Xu

Abstract. A dual-pass data assimilation scheme is developed to improve predictions of surface energy fluxes. Pass 1 of the dual-pass data assimilation scheme optimizes model vegetation parameters at the weekly temporal scale and pass 2 optimizes soil moisture at the daily temporal scale. Based on the ensemble Kalman filter (EnKF), land surface temperature (LST) data derived from the new generation of Chinese meteorology satellite (FY3A-VIRR) is assimilated into common land model (CoLM) for the first time. Four sites are selected for the data assimilation experiments, namely Arou, BJ, Guantao, and Miyun that include alpine meadow, grass, crop, and orchard land cover types. The results are compared with data set generated by a multi-scale surface energy flux observation system that includes an automatic weather station (AWS), an eddy covariance (EC) and a large aperture scintillometer (LAS). Results indicate that the CoLM can simulate the diurnal variations of surface energy flux, but usually overestimates sensible heat flux and underestimates latent heat flux and evaporation fraction (EF). With FY3A-VIRR LST data, the dual-pass data assimilation scheme can reduce model uncertainties and improve predictions of surface energy flux. Compared with EC measurements, the average model biases (BIAS) values change from 37.8 to 7.7 W m−2 and from −27.6 to 18.8 W m−2; the root mean square error (RMSE) values drop from 74.7 to 39.1 W m−2 and from 95.1 to 62.7 W m−2 for sensible and latent heat fluxes respectively. For evaporation fraction (EF), the average BIAS values change from −0.29 to 0.0 and the average RMSE values drop from 0.38 to 0.12. To compare the results with LAS-measured sensible heat flux, the source areas are calculated using a footprint model and overlaid with FY3A pixels. The four sites averaged BIAS values drop from 63.7 to −8.5 W m−2 and RMSE values drop from 118.2 to 69.8 W m−2. Ultimately, the error sources in surface energy flux predictions are investigated, and the results show that both soil moisture and vegetation parameters caused the big model biases in surface energy flux predictions. With Pass 1 and Pass 2, the dual-pass data assimilation scheme can cut down the surface energy flux prediction biases (BIAS) to nearly zero.


2021 ◽  
Author(s):  
Ivonne Trebs ◽  
Kaniska Mallick ◽  
Nishan Bhattarai ◽  
Mauro Sulis ◽  
James Cleverly ◽  
...  

<p>‘Aerodynamic resistance’ (hereafter r<sub>a</sub>) is a preeminent variable in the modelling of evapotranspiration (ET), and its accurate quantification plays a critical role in determining the performance and consistency of thermal remote sensing-based surface energy balance (SEB) models for estimating ET at local to regional scales. Atmospheric stability links r<sub>a</sub> with land surface temperature (LST) and the representation of their interactions in the SEB models determines the accuracy of ET estimates.</p><p>The present study investigates the influence of r<sub>a</sub> and its relation to LST uncertainties on the performance of three structurally different SEB models by combining nine OzFlux eddy covariance datasets from 2011 to 2019 from sites of different aridity in Australia with MODIS Terra and Aqua LST and leaf area index (LAI) products. Simulations of the latent heat flux (LE, energy equivalent of ET in W/m<sup>2</sup>) from the SPARSE (Soil Plant Atmosphere and Remote Sensing Evapotranspiration), SEBS (Surface Energy Balance System) and STIC (Surface Temperature Initiated Closure) models forced with MODIS LST, LAI, and in-situ meteorological datasets were evaluated using observed flux data across water-limited (semi-arid and arid) and radiation-limited (mesic) ecosystems.</p><p>Our results revealed that the three models tend to overestimate instantaneous LE in the water-limited shrubland, woodland and grassland ecosystems by up to 60% on average, which was caused by an underestimation of the sensible heat flux (H). LE overestimation was associated with discrepancies in r<sub>a</sub> retrievals under conditions of high atmospheric instability, during which errors in LST (expressed as the difference between MODIS LST and in-situ LST) apparently played a minor role. On the other hand, a positive bias in LST coincides with low r<sub>a</sub> and causes slight underestimation of LE at the water-limited sites. The impact of r<sub>a</sub> on the LE residual error was found to be of the same magnitude as the influence of errors in LST in the semi-arid ecosystems as indicated by variable importance in projection (VIP) coefficients from partial least squares regression above unity. In contrast, our results for mesic forest ecosystems indicated minor dependency on r<sub>a</sub> for modelling LE (VIP<0.4), which was due to a higher roughness length and lower LST resulting in dominance of mechanically generated turbulence, thereby diminishing the importance of atmospheric stability in the determination of r<sub>a</sub>.</p>


2015 ◽  
Vol 19 (4) ◽  
pp. 2017-2036 ◽  
Author(s):  
R. Guzinski ◽  
H. Nieto ◽  
S. Stisen ◽  
R. Fensholt

Abstract. Evapotranspiration (ET) is the main link between the natural water cycle and the land surface energy budget. Therefore water-balance and energy-balance approaches are two of the main methodologies for modelling this process. The water-balance approach is usually implemented as a complex, distributed hydrological model, while the energy-balance approach is often used with remotely sensed observations of, for example, the land surface temperature (LST) and the state of the vegetation. In this study we compare the catchment-scale output of two remote sensing models based on the two-source energy-balance (TSEB) scheme, against a hydrological model, MIKE SHE, calibrated over the Skjern river catchment in western Denmark. The three models utilize different primary inputs to estimate ET (LST from different satellites in the case of remote sensing models and modelled soil moisture and heat flux in the case of the MIKE SHE ET module). However, all three of them use the same ancillary data (meteorological measurements, land cover type and leaf area index, etc.) and produce output at similar spatial resolution (1 km for the TSEB models, 500 m for MIKE SHE). The comparison is performed on the spatial patterns of the fluxes present within the catchment area as well as on temporal patterns on the whole catchment scale in 8-year long time series. The results show that the spatial patterns of latent heat flux produced by the remote sensing models are more similar to each other than to the fluxes produced by MIKE SHE. The temporal patterns produced by the remote sensing and hydrological models are quite highly correlated (r ≈ 0.8). This indicates potential benefits to the hydrological modelling community of integrating spatial information derived through remote sensing methodology (contained in the ET maps derived with the energy-balance models, satellite based LST or another source) into the hydrological models. How this could be achieved and how to evaluate the improvements, or lack of thereof, is still an open research question.


2013 ◽  
Vol 6 (1) ◽  
pp. 015
Author(s):  
Lidiane Cristina Félix Gomes ◽  
Carlos Antonio Costa dos Santos ◽  
Hermes Alves de Almeida

O principal objetivo deste trabalho foi quantificar os principais componentes do balanço de energia à superfície da cidade de Patos- PB utilizando-se técnicas de sensoriamento remoto a partir de imagens do TM Landsat-5 e aplicação do algoritmo SEBAL para determinar os componentes do balanço de energia à superfície. Os resultados mostraram que o saldo de radiação (Rn) variou de modo similar ao determinado na literatura; os valores do fluxo de calor sensível (H) apresentaram alta variabilidade espacial, coerentes com a distribuição espacial de H sobre a área estudada. O fluxo de calor latente (LE) apresentou os maiores valores para os corpos d’água e área vegetadas e menores valores para a zona urbana e solo exposto, devido à sua baixa disponibilidade de umidade, resultando em valores de evapotranspiração diária variando entre 0,1 e 12 mm dia-1. A imagem de satélite mostrou que a modificação do uso e da cobertura do solo contribui para o balanço de energia à superfície de uma área urbana. AbstractThe main objective of this study was to quantify the major components of the energy balance at the surface of the city of Patos-PB using remote sensing images from Landsat-5 TM and application of SEBAL algorithm to determine the components of the surface energy balance. The findings showed that the net radiation (Rn) ranged similarly to those presented in the literature; the values of the sensible heat flux (H) showed high spatial variability, consistent in the spatial distribution of H in the area studied. The latent heat flux (LE) showed the highest values for the water bodies and vegetated area, and lowest values for urban areas and bare soil, due to its low availability of moisture, resulting in daily evaporation values from 0.1 to 12 mm day-1. The satellite image showed that the change of use and land cover contributes to the surface energy balance of an urban area.


2012 ◽  
Vol 9 (9) ◽  
pp. 10411-10445 ◽  
Author(s):  
X. Chen ◽  
Z. Su ◽  
Y. Ma ◽  
K. Yang ◽  
B. Wang

Abstract. Surface solar radiation is an important parameter in surface energy balance models and in estimation of evapotranspiration. This study developed a DEM based radiation model to estimate instantaneous clear sky solar radiation for surface energy balance system to obtain accurate energy absorbed by the mountain surface. Efforts to improve spatial accuracy of satellite based surface energy budget in mountainous regions were made in this work. Based on 8 scenes of Landsat TM/ETM+ (Thematic Mapper/Enhanced Thematic Mapper+) data and observations around Qomolangma region of the Tibetan Plateau, the topographical enhanced surface energy balance system (TESEBS) was tested for deriving net radiation, ground heat flux, sensible heat flux and latent heat flux distributions over the heterogeneous land surface. The land surface energy fluxes over the study area showed a wide range in accordance with the surface features and their thermodynamic states. The model was validated by observations at QOMS/CAS site in the research area with a reasonable accuracy. The mean bias of net radiation, sensible heat flux, ground heat flux and latent heat flux is lower than 23.6 W m−2. The surface solar radiation estimated by the DEM based radiation model developed by this study has a mean bias as low as −9.6 W m−2.


2021 ◽  
Vol 58 (03) ◽  
pp. 274-285
Author(s):  
H. V. Parmar ◽  
N. K. Gontia

Remote sensing based various land surface and bio-physical variables like Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), surface albedo, transmittance and surface emissivity are useful for the estimation of spatio-temporal variations in evapotranspiration (ET) using Surface Energy Balance Algorithm for Land (SEBAL) method. These variables were estimated under the present study for Ozat-II canal command in Junagadh district, Gujarat, India, using Landsat-7 and Landsat-8 images of summer season of years 2014 and 2015. The derived parameters were used in SEBAL to estimate the Actual Evapotranspiration (AET) of groundnut and sesame crops. The lower values NDVI observed during initial (March) and end (May) stages of crop growth indicated low vegetation cover during these periods. With full canopy coverage of the crops, higher value of NDVI (0.90) was observed during the mid-crop growth stage. The remote sensing-based LST was lower for agricultural areas and the area near banks of the canal and Ozat River, while higher surface temperatures were observed for rural settlements, road and areas with exposed dry soil. The maximum surface temperatures in the cropland were observed as 311.0 K during March 25, 2014 and 315.8 K during May 31, 2015. The AET of summer groundnut increased from 3.75 to 7.38 mm.day-1, and then decreased to 3.99 mm.day-1 towards the end stage of crop growth. The daily AET of summer sesame ranged from 1.06 to 7.72 mm.day-1 over different crop growth stages. The seasonal AET of groundnut and sesame worked out to 358.19 mm and 346.31 mm, respectively. The estimated AET would be helpful to schedule irrigation in the large canal command.


2017 ◽  
Vol 21 (7) ◽  
pp. 3401-3415 ◽  
Author(s):  
Nobuhle P. Majozi ◽  
Chris M. Mannaerts ◽  
Abel Ramoelo ◽  
Renaud Mathieu ◽  
Alecia Nickless ◽  
...  

Abstract. Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD), and net radiation. After filtering years with low-quality data (2004–2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02) being closest to unity, with the dry season (0.70) having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in VPD is correlated with a decrease in LE and increase in H during the wet season, and an increase in both fluxes during the dry season.


Sign in / Sign up

Export Citation Format

Share Document