scholarly journals Observed and Modeled Global Ocean Turbulence Regimes as Deduced from Surface Trajectory Data

2013 ◽  
Vol 43 (11) ◽  
pp. 2249-2269 ◽  
Author(s):  
Jenny A. U. Nilsson ◽  
Kristofer Döös ◽  
Paolo M. Ruti ◽  
Vincenzo Artale ◽  
Andrew Coward ◽  
...  

Abstract A large-scale tool for systematic analyses of the dispersal and turbulent properties of ocean currents and the subsequent separation of dynamical regimes according to the prevailing trajectories taxonomy in a certain area was proposed by Rupolo. In the present study, this methodology has been extended to the analysis of model trajectories obtained by analytical computations of the particle advection equation using the Lagrangian open-source software package Tracing the Water Masses of the North Atlantic and the Mediterranean (TRACMASS), and intercomparisons have been made between the surface velocity fields from three different configurations of the global Nucleus for European Modelling of the Ocean (NEMO) ocean/sea ice general circulation model. Lagrangian time scales of the observed and synthetic trajectory datasets have been calculated by means of inverse Lagrangian stochastic modeling, and the influence of the model field spatial and temporal resolution on the analyses has been investigated. In global-scale ocean modeling, compromises are frequently made in terms of grid resolution and time averaging of the output fields because high-resolution data require considerable amounts of storage space. Here, the implications of such approximations on the modeled velocity fields and, consequently, on the particle dispersion, have been assessed through validation against observed drifter tracks. This study aims, moreover, to shed some light on the relatively unknown turbulent properties of near-surface ocean dynamics and their representation in numerical models globally and in a number of key regions. These results could be of interest for other studies within the field of turbulent eddy diffusion parameterization in ocean models or ocean circulation studies involving long-term coarse-grid model experiments.

2020 ◽  
Author(s):  
Bruno Buongiorno Nardelli

Abstract. Estimates of 3D ocean circulation are needed to improve our understanding of ocean dynamics and to assess its impact on marine ecosystems and Earth climate. Here we present the OMEGA3D product, an observation-based timeseries of (quasi) global 3D ocean currents covering the 1993–2018 period, developed by the Italian Consiglio Nazionale delle Ricerche within the European Copernicus Marine Environment Monitoring Service (CMEMS). This dataset was obtained by applying a diabatic quasi-geostrophic (QG) diagnostic model to CMEMS data-driven ARMOR3D weekly reconstruction of temperature and salinity and ERA-Interim fluxes. Outside the equatorial band, vertical velocities were retrieved in the upper 1500 m, at nominal ¼° resolution, and successively used to compute the horizontal ageostrophic components. Root mean square differences between OMEGA3D total horizontal velocities and totally independent drifter observations at two different depths (15 m and 1000 m) decrease with respect to corresponding estimates obtained from zero-order geostrophic balance, meaning that estimated vertical velocities can also be deemed reliable. OMEGA3D horizontal velocities are also closer to drifter observations than velocities provided by a set of re-analyses spanning a comparable time period, but based on data assimilation in ocean general circulation numerical models. The full OMEGA3D product (released on 31st of March 2020) is available upon free registration at https://doi.org/10.25423/cmcc/multiobs_glo_phy_w_rep_015_007. The reduced subset used here for validation and review purposes is openly available at https://doi.org/10.5281/zenodo.3696885 (Buongiorno Nardelli, 2020).


2020 ◽  
Vol 12 (3) ◽  
pp. 1711-1723
Author(s):  
Bruno Buongiorno Nardelli

Abstract. Estimates of 3D ocean circulation are needed to improve our understanding of ocean dynamics and to assess their impact on marine ecosystems and Earth climate. Here we present the OMEGA3D product, an observation-based time series of (quasi-)global 3D ocean currents covering the 1993–2018 period, developed by the Italian Consiglio Nazionale delle Ricerche within the European Copernicus Marine Environment Monitoring Service (CMEMS). This dataset was obtained by applying a diabatic quasi-geostrophic (QG) diagnostic model to the data-driven CMEMS-ARMOR3D weekly reconstruction of temperature and salinity as well as ERA Interim fluxes. Outside the equatorial band, vertical velocities were retrieved in the upper 1500 m at 1∕4∘ nominal resolution and successively used to compute the horizontal ageostrophic components. Root mean square differences between OMEGA3D total horizontal velocities and totally independent drifter observations at two different depths (15 and 1000 m) decrease with respect to corresponding estimates obtained from zero-order geostrophic balance, meaning that estimated vertical velocities can also be deemed reliable. OMEGA3D horizontal velocities are also closer to drifter observations than velocities provided by a set of reanalyses spanning a comparable time period but based on data assimilation in ocean general circulation numerical models. The full OMEGA3D product (released on 31 March 2020) is available upon free registration at https://doi.org/10.25423/cmcc/multiobs_glo_phy_w_rep_015_007 (Buongiorno Nardelli, 2020a). The reduced subset used here for validation and review purposes is openly available at https://doi.org/10.5281/zenodo.3696885 (Buongiorno Nardelli, 2020b).


2006 ◽  
Vol 19 (15) ◽  
pp. 3751-3767 ◽  
Author(s):  
Véronique Bugnion ◽  
Chris Hill ◽  
Peter H. Stone

Abstract Multicentury sensitivities in a realistic geometry global ocean general circulation model are analyzed using an adjoint technique. This paper takes advantage of the adjoint model’s ability to generate maps of the sensitivity of a diagnostic (i.e., the meridional overturning’s strength) to all model parameters. This property of adjoints is used to review several theories, which have been elaborated to explain the strength of the North Atlantic’s meridional overturning. This paper demonstrates the profound impact of boundary conditions in permitting or suppressing mechanisms within a realistic model of the contemporary ocean circulation. For example, the so-called Drake Passage Effect in which wind stress in the Southern Ocean acts as the main driver of the overturning’s strength, is shown to be an artifact of boundary conditions that restore the ocean’s surface temperature and salinity toward prescribed climatologies. Advective transports from the Indian and Pacific basins play an important role in setting the strength of the overturning circulation under “mixed” boundary conditions, in which a flux of freshwater is specified at the ocean’s surface. The most “realistic” regime couples an atmospheric energy and moisture balance model to the ocean. In this configuration, inspection of the global maps of sensitivity to wind stress and diapycnal mixing suggests a significant role for near-surface Ekman processes in the Tropics. Buoyancy also plays an important role in setting the overturning’s strength, through direct thermal forcing near the sites of convection, or through the advection of salinity anomalies in the Atlantic basin.


2020 ◽  
Author(s):  
Linus Shihora ◽  
Henryk Dobslaw

<p>The Atmosphere and Ocean De-Aliasing Level-1B (AOD1B) product provides a priori information about temporal variations in the Earth's gravity field caused by global mass variability in the atmosphere and ocean and is routinely used as background model in satellite gravimetry. The current version 06 provides Stokes coefficients expanded up to d/o 180 every 3 hours. It is based on ERA-Interim and the ECMWF operational model for the atmosphere, and simulations with the global ocean general circulation model MPIOM consistently forced with the fields from the same atmospheric data-set.</p> <p>We here present preliminary numerical experiments in the development towards a new release 07 of AOD1B. The experiments are performed with the TP10 configuration of MPIOM and include (I) new hourly atmospheric forcing based on the new ERA-5 reanalysis from ECMWF; (II) an improved bathymetry around Antarctica including cavities under the ice shelves; and (III) an explicit implementation of the feedback effects of self-attraction and loading to ocean dynamics. The simulated ocean bottom pressure variability is discussed with respect to AOD1B version 6 as well as in situ ocean observations. A preliminary timeseries of hourly AOD1B-like coefficients for the year 2019 that incorporate the above mentioned improvements will be made available for testing purposes.</p>


2012 ◽  
Vol 9 (1) ◽  
pp. 25-61
Author(s):  
A. M. Huerta-Casas ◽  
D. J. Webb

Abstract. The transport and storage of heat by the ocean is of crucial importance because of its effect on ocean dynamics and its impact on the atmosphere, climate and climate change. Unfortunately, limits to the amount of data that can be collected and stored means that many experimental and modelling studies of the heat budget have to make use of mean datasets where the effects of short term fluctuations are lost. In this paper we investigate the magnitude of the resulting errors making use of data from OCCAM, a high resolution global ocean model. The model carries out a proper heat balance every timestep so any imbalances that are found in the analysis must result from the use of mean fields. The study concentrates on two areas of the ocean affecting the El Nino. The first is the region of tropical instability waves north of the equator. The second is in the upwelling region along the equator. It is shown that in both cases, processes with a period of less than five days can have a significant impact on the heat budget. Thus analyses using data averaged over five days or more are likely to have significant errors. It is also shown that if a series of instantaneous values is available, reasonable estimates can be made of the size of the errors. In model studies such values are available in the form of the datasets used to restart the model. In experimental studies they may be in the form of individual unaveraged observations.


2015 ◽  
Vol 32 (10) ◽  
pp. 1880-1901 ◽  
Author(s):  
Maristella Berta ◽  
Annalisa Griffa ◽  
Marcello G. Magaldi ◽  
Tamay M. Özgökmen ◽  
Andrew C. Poje ◽  
...  

AbstractThis study investigates the results of blending altimetry-based surface currents in the Gulf of Mexico with available drifter observations. Here, subsets of trajectories obtained from the near-simultaneous deployment of about 300 Coastal Ocean Dynamics Experiment (CODE) surface drifters provide both input and control data. The fidelity of surface velocity fields are measured in the Lagrangian frame by a skill score that compares the separation between observed and hindcast trajectories to the observed absolute dispersion. Trajectories estimated from altimetry-based velocities provide satisfactory average results (skill score > 0.4) in large (~100 km) open-ocean structures. However, the distribution of skill score values within these structures is quite variable. In the DeSoto Canyon and on the shelf where smaller-scale structures are present, the overall altimeter skill score is typically reduced to less than 0.2. After 3 days, the dataset-averaged distance between hindcast and drifter trajectories, , is about 45 km—only slightly less than the average dispersion of the observations, km. Blending information from a subset of drifters via a variational method leads to significant improvements in all dynamical regimes. Skill scores typically increase to 0.8 with reduced to less than half of . Blending available drifter information with altimetry data restores velocity field variability at scales not directly sampled by the altimeter and introduces ageostrophic components that cannot be described by simple Ekman superposition. The proposed method provides a means to improve the fidelity of near-real-time synoptic estimates of ocean surface velocity fields by combining altimetric data with modest numbers of in situ drifter observations.


2016 ◽  
Vol 9 (8) ◽  
pp. 2665-2684 ◽  
Author(s):  
Doroteaciro Iovino ◽  
Simona Masina ◽  
Andrea Storto ◽  
Andrea Cipollone ◽  
Vladimir N. Stepanov

Abstract. Analysis of a global eddy-resolving simulation using the NEMO general circulation model is presented. The model has 1/16° horizontal spacing at the Equator, employs two displaced poles in the Northern Hemisphere, and uses 98 vertical levels. The simulation was spun up from rest and integrated for 11 model years, using ERA-Interim reanalysis as surface forcing. Primary intent of this hindcast is to test how the model represents upper ocean characteristics and sea ice properties. Analysis of the zonal averaged temperature and salinity, and the mixed layer depth indicate that the model average state is in good agreement with observed fields and that the model successfully represents the variability in the upper ocean and at intermediate depths. Comparisons against observational estimates of mass transports through key straits indicate that most aspects of the model circulation are realistic. As expected, the simulation exhibits turbulent behaviour and the spatial distribution of the sea surface height (SSH) variability from the model is close to the observed pattern. The distribution and volume of the sea ice are, to a large extent, comparable to observed values. Compared with a corresponding eddy-permitting configuration, the performance of the model is significantly improved: reduced temperature and salinity biases, in particular at intermediate depths, improved mass and heat transports, better representation of fluxes through narrow and shallow straits, and increased global-mean eddy kinetic energy (by ∼ 40 %). However, relatively minor weaknesses still exist such as a lower than observed magnitude of the SSH variability. We conclude that the model output is suitable for broader analysis to better understand upper ocean dynamics and ocean variability at global scales. This simulation represents a major step forward in the global ocean modelling at the Euro-Mediterranean Centre on Climate Change and constitutes the groundwork for future applications to short-range ocean forecasting.


2017 ◽  
Vol 5 (4) ◽  
pp. SR23-SR33 ◽  
Author(s):  
Xin Cheng ◽  
Kun Jiao ◽  
Dong Sun ◽  
Zhen Xu ◽  
Denes Vigh ◽  
...  

Over the past decade, acoustic full-waveform inversion (FWI) has become one of the standard methods in the industry to construct high-resolution velocity fields from the seismic data acquired. While most of the successful applications are for marine acquisition data with rich low-frequency diving or postcritical waves at large offsets, the application of acoustic FWI on land data remains a challenging topic. Land acoustic FWI application faces many severe difficulties, such as the presence of strong elastic effects, large near-surface velocity contrast, and heterogeneous, topography variations, etc. In addition, it is well-known that low-frequency transmitted seismic energy is crucial for the success of FWI to overcome sensitivity to starting velocity fields; unfortunately, those are the parts of the data that suffer the most from a low signal-to-noise ratio (S/N) in land acquisition. We have developed an acoustic FWI application on a land data set from North Kuwait, and demonstrated our solutions to mitigate some of the challenges posed by land data. More specifically, we have developed a semblance-based high-resolution Radon (HR-Radon) inversion approach to enhance the S/N of the low-frequency part of the FWI input data and to ultimately improve the convergence of the land FWI workflow. To mitigate the impact of elastic effects, we included only the diving and postcritical early arrivals in the waveform inversion. Our results show that, with the aid of HR-Radon preconditioning and a carefully designed workflow, acoustic FWI has the ability to derive a reliable high-resolution near-surface model that could not be otherwise recovered through traditional tomographic methods.


2018 ◽  
Vol 146 (4) ◽  
pp. 1233-1257 ◽  
Author(s):  
Andrea Storto ◽  
Matthew J. Martin ◽  
Bruno Deremble ◽  
Simona Masina

Coupled data assimilation is emerging as a target approach for Earth system prediction and reanalysis systems. Coupled data assimilation may be indeed able to minimize unbalanced air–sea initialization and maximize the intermedium propagation of observations. Here, we use a simplified framework where a global ocean general circulation model (NEMO) is coupled to an atmospheric boundary layer model [Cheap Atmospheric Mixed Layer (CheapAML)], which includes prognostic prediction of near-surface air temperature and moisture and allows for thermodynamic but not dynamic air–sea coupling. The control vector of an ocean variational data assimilation system is augmented to include 2-m atmospheric parameters. Cross-medium balances are formulated either through statistical cross covariances from monthly anomalies or through the application of linearized air–sea flux relationships derived from the tangent linear approximation of bulk formulas, which represents a novel solution to the coupled assimilation problem. As a proof of concept, the methodology is first applied to study the impact of in situ ocean observing networks on the near-surface atmospheric analyses and later to the complementary study of the impact of 2-m air observations on sea surface parameters, to assess benefits of strongly versus weakly coupled data assimilation. Several forecast experiments have been conducted for the period from June to December 2011. We find that especially after day 2 of the forecasts, strongly coupled data assimilation provides a beneficial impact, particularly in the tropical oceans. In most areas, the use of linearized air–sea balances outperforms the statistical relationships used, providing a motivation for implementing coupled tangent linear trajectories in four-dimensional variational data assimilation systems. Further impacts of strongly coupled data assimilation might be found by retuning the background error covariances.


Sign in / Sign up

Export Citation Format

Share Document