Improved Surface Velocity and Trajectory Estimates in the Gulf of Mexico from Blended Satellite Altimetry and Drifter Data

2015 ◽  
Vol 32 (10) ◽  
pp. 1880-1901 ◽  
Author(s):  
Maristella Berta ◽  
Annalisa Griffa ◽  
Marcello G. Magaldi ◽  
Tamay M. Özgökmen ◽  
Andrew C. Poje ◽  
...  

AbstractThis study investigates the results of blending altimetry-based surface currents in the Gulf of Mexico with available drifter observations. Here, subsets of trajectories obtained from the near-simultaneous deployment of about 300 Coastal Ocean Dynamics Experiment (CODE) surface drifters provide both input and control data. The fidelity of surface velocity fields are measured in the Lagrangian frame by a skill score that compares the separation between observed and hindcast trajectories to the observed absolute dispersion. Trajectories estimated from altimetry-based velocities provide satisfactory average results (skill score > 0.4) in large (~100 km) open-ocean structures. However, the distribution of skill score values within these structures is quite variable. In the DeSoto Canyon and on the shelf where smaller-scale structures are present, the overall altimeter skill score is typically reduced to less than 0.2. After 3 days, the dataset-averaged distance between hindcast and drifter trajectories, , is about 45 km—only slightly less than the average dispersion of the observations, km. Blending information from a subset of drifters via a variational method leads to significant improvements in all dynamical regimes. Skill scores typically increase to 0.8 with reduced to less than half of . Blending available drifter information with altimetry data restores velocity field variability at scales not directly sampled by the altimeter and introduces ageostrophic components that cannot be described by simple Ekman superposition. The proposed method provides a means to improve the fidelity of near-real-time synoptic estimates of ocean surface velocity fields by combining altimetric data with modest numbers of in situ drifter observations.

2018 ◽  
Vol 76 (5) ◽  
pp. 139-161 ◽  
Author(s):  
Maher Bouzaiene ◽  
Milena Menna ◽  
Pierre-Marie Poulain ◽  
Dalila Elhmaidi

Dispersion characteristics in the Western Mediterranean are analyzed using data from Coastal Ocean Dynamics Experiment (CODE) and Surface Velocity Program (SVP) surface drifters deployed in the period 1986–2017. Results are presented in terms of absolute dispersion A2 (mean-squared displacement of drifter individuals) and of relative dispersion (D2; mean square separation distance of drifter pairs). Moreover, the dispersion characteristics are estimated for different initial separation distances (D0) between particles: smaller, larger, or comparable with the internal Rossby radius of deformation. Results show the presence of a quasiballistic regime for absolute dispersion at small time scales and the nonlocal relative dispersion regime related to the submesoscale activities for scales smaller than the internal Rossby radius. At intermediate times, two anomalous absolute dispersion regimes (elliptic and hyperbolic regimes) related with the flow topology are observed, although the relative dispersion involves the Richardson and shear/ballistic regimes only for D0 smaller than the Rossby radius. During the subsequent 20–30 days, absolute dispersion shows quasirandom walk regime and relative dispersion follows the diffusive regime for scales larger than 100 km for which pair velocities are uncorrelated.


2013 ◽  
Vol 43 (11) ◽  
pp. 2249-2269 ◽  
Author(s):  
Jenny A. U. Nilsson ◽  
Kristofer Döös ◽  
Paolo M. Ruti ◽  
Vincenzo Artale ◽  
Andrew Coward ◽  
...  

Abstract A large-scale tool for systematic analyses of the dispersal and turbulent properties of ocean currents and the subsequent separation of dynamical regimes according to the prevailing trajectories taxonomy in a certain area was proposed by Rupolo. In the present study, this methodology has been extended to the analysis of model trajectories obtained by analytical computations of the particle advection equation using the Lagrangian open-source software package Tracing the Water Masses of the North Atlantic and the Mediterranean (TRACMASS), and intercomparisons have been made between the surface velocity fields from three different configurations of the global Nucleus for European Modelling of the Ocean (NEMO) ocean/sea ice general circulation model. Lagrangian time scales of the observed and synthetic trajectory datasets have been calculated by means of inverse Lagrangian stochastic modeling, and the influence of the model field spatial and temporal resolution on the analyses has been investigated. In global-scale ocean modeling, compromises are frequently made in terms of grid resolution and time averaging of the output fields because high-resolution data require considerable amounts of storage space. Here, the implications of such approximations on the modeled velocity fields and, consequently, on the particle dispersion, have been assessed through validation against observed drifter tracks. This study aims, moreover, to shed some light on the relatively unknown turbulent properties of near-surface ocean dynamics and their representation in numerical models globally and in a number of key regions. These results could be of interest for other studies within the field of turbulent eddy diffusion parameterization in ocean models or ocean circulation studies involving long-term coarse-grid model experiments.


Author(s):  
WILTON STURGES

AbstractA previous study of currents in the Gulf of Mexico by the author used long-term means from three independent data sources. Ship-drift results are in good agreement with surface drifters, but these two do not agree with satellite sea-surface heights (SSH). The agreement between the first two suggested the possibility that there could be errors in the SSH or that the mean surface flow is not in geostrophic balance. The present results, using the addition of a fourth long-term mean from hydrographic data, which agrees with the SSH, resolves the issue. The lack of agreement between different long-term means is from inadequate coverage in space and time in data from ship drifts and drifters.


2017 ◽  
Vol 34 (11) ◽  
pp. 2509-2532 ◽  
Author(s):  
Guillaume Novelli ◽  
Cédric M. Guigand ◽  
Charles Cousin ◽  
Edward H. Ryan ◽  
Nathan J. M. Laxague ◽  
...  

AbstractTargeted observations of submesoscale currents are necessary to improve science’s understanding of oceanic mixing, but these dynamics occur at spatiotemporal scales that are currently challenging to detect. Prior studies have recently shown that the submesoscale surface velocity field can be measured by tracking hundreds of surface drifters released in tight arrays. This strategy requires drifter positioning to be accurate, frequent, and to last for several weeks. However, because of the large numbers involved, drifters must be low-cost, compact, easy to handle, and also made of materials harmless to the environment. Therefore, the novel Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) drifter was designed following these criteria to facilitate massive sampling of near-surface currents during the Lagrangian Submesoscale Experiment (LASER). The drifting characteristics were determined under a wide range of currents, waves, and wind conditions in laboratory settings. Results showed that the drifter accurately follows the currents in the upper 0.60 m, that it presents minimal wave rectification issues, and that its wind-induced slip velocity is less than 0.5% of the neutral wind speed at 10 m. In experiments conducted in both coastal and deep ocean conditions under wind speeds up to 10 m s−1, the trajectories of the traditional Coastal Ocean Dynamics Experiment (CODE) and the CARTHE drifters were nearly identical. Following these tests, 1100 units were produced and deployed during the LASER campaign, successfully tracking submesoscale and mesoscale features in the Gulf of Mexico. It is hoped that this drifter will enable high-density sampling near metropolitan areas subject to stress by the overpopulation, such as lakes, rivers, estuaries, and environmentally sensitive areas, such as the Arctic.


2010 ◽  
Vol 27 (3) ◽  
pp. 409-427 ◽  
Author(s):  
Kun Tao ◽  
Ana P. Barros

Abstract The objective of spatial downscaling strategies is to increase the information content of coarse datasets at smaller scales. In the case of quantitative precipitation estimation (QPE) for hydrological applications, the goal is to close the scale gap between the spatial resolution of coarse datasets (e.g., gridded satellite precipitation products at resolution L × L) and the high resolution (l × l; L ≫ l) necessary to capture the spatial features that determine spatial variability of water flows and water stores in the landscape. In essence, the downscaling process consists of weaving subgrid-scale heterogeneity over a desired range of wavelengths in the original field. The defining question is, which properties, statistical and otherwise, of the target field (the known observable at the desired spatial resolution) should be matched, with the caveat that downscaling methods be as a general as possible and therefore ideally without case-specific constraints and/or calibration requirements? Here, the attention is focused on two simple fractal downscaling methods using iterated functions systems (IFS) and fractal Brownian surfaces (FBS) that meet this requirement. The two methods were applied to disaggregate spatially 27 summertime convective storms in the central United States during 2007 at three consecutive times (1800, 2100, and 0000 UTC, thus 81 fields overall) from the Tropical Rainfall Measuring Mission (TRMM) version 6 (V6) 3B42 precipitation product (∼25-km grid spacing) to the same resolution as the NCEP stage IV products (∼4-km grid spacing). Results from bilinear interpolation are used as the control. A fundamental distinction between IFS and FBS is that the latter implies a distribution of downscaled fields and thus an ensemble solution, whereas the former provides a single solution. The downscaling effectiveness is assessed using fractal measures (the spectral exponent β, fractal dimension D, Hurst coefficient H, and roughness amplitude R) and traditional operational scores statistics scores [false alarm rate (FR), probability of detection (PD), threat score (TS), and Heidke skill score (HSS)], as well as bias and the root-mean-square error (RMSE). The results show that both IFS and FBS fractal interpolation perform well with regard to operational skill scores, and they meet the additional requirement of generating structurally consistent fields. Furthermore, confidence intervals can be directly generated from the FBS ensemble. The results were used to diagnose errors relevant for hydrometeorological applications, in particular a spatial displacement with characteristic length of at least 50 km (2500 km2) in the location of peak rainfall intensities for the cases studied.


2009 ◽  
Author(s):  
Gloria Koenigsberger ◽  
Edmundo Moreno ◽  
David Harrington ◽  
Ivan Hubeny ◽  
James M. Stone ◽  
...  

2021 ◽  
Vol 15 (4) ◽  
pp. 2115-2132
Author(s):  
Maximillian Van Wyk de Vries ◽  
Andrew D. Wickert

Abstract. We present Glacier Image Velocimetry (GIV), an open-source and easy-to-use software toolkit for rapidly calculating high-spatial-resolution glacier velocity fields. Glacier ice velocity fields reveal flow dynamics, ice-flux changes, and (with additional data and modelling) ice thickness. Obtaining glacier velocity measurements over wide areas with field techniques is labour intensive and often associated with safety risks. The recent increased availability of high-resolution, short-repeat-time optical imagery allows us to obtain ice displacement fields using “feature tracking” based on matching persistent irregularities on the ice surface between images and hence, surface velocity over time. GIV is fully parallelized and automatically detects, filters, and extracts velocities from large datasets of images. Through this coupled toolchain and an easy-to-use GUI, GIV can rapidly analyse hundreds to thousands of image pairs on a laptop or desktop computer. We present four example applications of the GIV toolkit in which we complement a glaciology field campaign (Glaciar Perito Moreno, Argentina) and calculate the velocity fields of small mid-latitude (Glacier d'Argentière, France) and tropical glaciers (Volcán Chimborazo, Ecuador), as well as very large glaciers (Vavilov Ice Cap, Russia). Fully commented MATLAB code and a stand-alone app for GIV are available from GitHub and Zenodo (see https://doi.org/10.5281/zenodo.4624831, Van Wyk de Vries, 2021a).


1997 ◽  
Vol 1997 (1) ◽  
pp. 916-919
Author(s):  
Debra A. Simecek-Beatty ◽  
William J. Lehr ◽  
Walter R. Johnson ◽  
James M. Price

ABSTRACT As part of a joint program to use satellite-tracked drifters at accidental oil spills, the National Oceanic and Atmospheric Administration deployed three drifters supplied by the Minerals Management Service during the barge Buffalo 292 spill in the Gulf of Mexico. The deployments complemented visual observations of the oil spill and provided data for calibrating the on-scene spill model. The data-rich environment of this particular spill response made it possible to calculate the vector correlation between the drifters and a hindcast of the oil movement and to estimate the wind-drift factors for the oil-tracking drifters.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2606 ◽  
Author(s):  
Liwei Yang ◽  
Xiaoqing Gao ◽  
Jiajia Hua ◽  
Pingping Wu ◽  
Zhenchao Li ◽  
...  

An algorithm to forecast very short-term (30–180 min) surface solar irradiance using visible and near infrared channels (AGRI) onboard the FengYun-4A (FY-4A) geostationary satellite was constructed and evaluated in this study. The forecasting products include global horizontal irradiance (GHI) and direct normal irradiance (DNI). The forecast results were validated using data from Chengde Meteorological Observatory for four typical months (October 2018, and January, April, and July 2019), representing the four seasons. Particle Image Velocimetry (PIV) was employed to calculate the cloud motion vector (CMV) field from the satellite images. The forecast results were compared with the smart persistence (SP) model. A seasonal study showed that July and April forecasting is more difficult than during October and January. For GHI forecasting, the algorithm outperformed the SP model for all forecasting horizons and all seasons, with the best result being produced in October; the skill score was greater than 20%. For DNI, the algorithm outperformed the SP model in July and October, with skill scores of about 12% and 11%, respectively. Annual performances were evaluated; the results show that the normalized root mean square error (nRMSE) value of GHI for 30–180 min horizon ranged from 26.78% to 36.84%, the skill score reached a maximum of 20.44% at the 30-min horizon, and the skill scores were all above 0 for all time horizons. For DNI, the maximum skill score was 6.62% at the 180-min horizon. Overall, compared with the SP model, the proposed algorithm is more accurate and reliable for GHI forecasting and slightly better for DNI forecasting.


Sign in / Sign up

Export Citation Format

Share Document