scholarly journals Connecting Antarctic Cross-Slope Exchange with Southern Ocean Overturning

2013 ◽  
Vol 43 (7) ◽  
pp. 1453-1471 ◽  
Author(s):  
Andrew L. Stewart ◽  
Andrew F. Thompson

Abstract Previous idealized investigations of Southern Ocean overturning have omitted its connection with the Antarctic continental shelves, leaving the influence of shelf processes on Antarctic Bottom Water (AABW) export unconsidered. In particular, the contribution of mesoscale eddies to setting the stratification and overturning circulation in the Antarctic Circumpolar Current (ACC) is well established, yet their role in cross-shelf exchange of water masses remains unclear. This study proposes a residual-mean theory that elucidates the connection between Antarctic cross-shelf exchange and overturning in the ACC, and the contribution of mesoscale eddies to the export of AABW. The authors motivate and verify this theory using an eddy-resolving process model of a sector of the Southern Ocean. The strength and pattern of the simulated overturning circulation strongly resemble those of the real ocean and are closely captured by the residual-mean theory. Over the continental slope baroclinic instability is suppressed, and so transport by mesoscale eddies is reduced. This suppression of the eddy fluxes also gives rise to the steep “V”-shaped isopycnals that characterize the Antarctic Slope Front in AABW-forming regions of the continental shelf. Furthermore, to produce water on the continental shelf that is dense enough to sink to the deep ocean, the deep overturning cell must be at least comparable in strength to wind-driven mean overturning on the continental slope. This results in a strong sensitivity of the deep overturning strength to changes in the polar easterly winds.

Author(s):  
Karen J. Heywood ◽  
Sunke Schmidtko ◽  
Céline Heuzé ◽  
Jan Kaiser ◽  
Timothy D. Jickells ◽  
...  

The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.


2016 ◽  
Vol 46 (12) ◽  
pp. 3729-3750 ◽  
Author(s):  
Andrew L. Stewart ◽  
Andrew F. Thompson

AbstractAlong various stretches of the Antarctic margins, dense Antarctic Bottom Water (AABW) escapes its formation sites and descends the continental slope. This export necessarily raises the isopycnals associated with lighter density classes over the continental slope, resulting in density surfaces that connect the near-freezing waters of the continental shelf to the much warmer circumpolar deep water (CDW) at middepth offshore. In this article, an eddy-resolving process model is used to explore the possibility that AABW export enhances shoreward heat transport by creating a pathway for CDW to access the continental shelf without doing any work against buoyancy forces. In the absence of a net alongshore pressure gradient, the shoreward CDW transport is effected entirely by mesoscale and submesoscale eddy transfer. Eddies are generated partly by instabilities at the pycnocline, sourcing their energy from the alongshore wind stress, but primarily by instabilities at the CDW–AABW interface, sourcing their energy from buoyancy loss on the continental shelf. This combination of processes induces a vertical convergence of eddy kinetic energy and alongshore momentum into the middepth CDW layer, sustaining a local maximum in the eddy kinetic energy over the slope and balancing the Coriolis force associated with the shoreward CDW transport. The resulting slope turbulence self-organizes into a series of alternating along-slope jets with strongly asymmetrical contributions to the slope energy and momentum budgets. Cross-shore variations in the potential vorticity gradient cause the jets to drift continuously offshore, suggesting that fronts observed in regions of AABW down-slope flow may in fact be transient features.


1996 ◽  
Vol 74 (8) ◽  
pp. 1485-1496 ◽  
Author(s):  
B. J. McConnell ◽  
M. A. Fedak

Twelve southern elephant seals (Mirounga leonina) were tracked for an average of 119 days as they left their breeding or moulting beaches on the island of South Georgia between 1990 and 1994. Females travelled either eastward up to 3000 km away to the open Southern Ocean or to the continental shelf on or near the Antarctic Peninsula. Males either stayed close to South Georgia or used South Georgia as a base for shorter trips. The females all left South Georgia in a directed manner at an average rate of 79.4 km/day over at least the first 15 days. Thereafter travel was interrupted by bouts of slower travel or stationary phases. The latter were localized at sites on the continental shelf or along its edge. Three seals that were tracked over more than one season repeated their outward direction of travel and used some of the same sites in subsequent years. The magnitude of the movements makes most of the Southern Ocean potentially available to elephant seals.


2018 ◽  
Vol 15 (6) ◽  
pp. 1843-1862 ◽  
Author(s):  
Andrés S. Rigual Hernández ◽  
José A. Flores ◽  
Francisco J. Sierro ◽  
Miguel A. Fuertes ◽  
Lluïsa Cros ◽  
...  

Abstract. The Southern Ocean is experiencing rapid and relentless change in its physical and biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing basin-wide ocean acidification. Observational data suggest that these changes are influencing the distribution and composition of pelagic plankton communities. Long-term and annual field observations on key environmental variables and organisms are a critical basis for predicting changes in Southern Ocean ecosystems. These observations are particularly needed, since high-latitude systems have been projected to experience the most severe impacts of ocean acidification and invasions of allochthonous species. Coccolithophores are the most prolific calcium-carbonate-producing phytoplankton group playing an important role in Southern Ocean biogeochemical cycles. Satellite imagery has revealed elevated particulate inorganic carbon concentrations near the major circumpolar fronts of the Southern Ocean that can be attributed to the coccolithophore Emiliania huxleyi. Recent studies have suggested changes during the last decades in the distribution and abundance of Southern Ocean coccolithophores. However, due to limited field observations, the distribution, diversity and state of coccolithophore populations in the Southern Ocean remain poorly characterised. We report here on seasonal variations in the abundance and composition of coccolithophore assemblages collected by two moored sediment traps deployed at the Antarctic zone south of Australia (2000 and 3700 m of depth) for 1 year in 2001–2002. Additionally, seasonal changes in coccolith weights of E. huxleyi populations were estimated using circularly polarised micrographs analysed with C-Calcita software. Our findings indicate that (1) coccolithophore sinking assemblages were nearly monospecific for E. huxleyi morphotype B/C in the Antarctic zone waters in 2001–2002; (2) coccoliths captured by the traps experienced weight and length reduction during summer (December–February); (3) the estimated annual coccolith weight of E. huxleyi at both sediment traps (2.11 ± 0.96 and 2.13 ± 0.91 pg at 2000 and 3700 m) was consistent with previous studies for morphotype B/C in other Southern Ocean settings (Scotia Sea and Patagonian shelf); and (4) coccolithophores accounted for approximately 2–5 % of the annual deep-ocean CaCO3 flux. Our results are the first annual record of coccolithophore abundance, composition and degree of calcification in the Antarctic zone. They provide a baseline against which to monitor coccolithophore responses to changes in the environmental conditions expected for this region in coming decades.


2019 ◽  
Vol 49 (12) ◽  
pp. 3163-3177 ◽  
Author(s):  
Wilma Gertrud Charlotte Huneke ◽  
Andreas Klocker ◽  
Benjamin Keith Galton-Fenzi

AbstractThe Antarctic Slope Front (ASF) is located along much of the Antarctic continental shelf break and helps to maintain a barrier to the movement of Circumpolar Deep Water (CDW) onto the continental shelf. The stability of the ASF has a major control on cross-shelf heat transport and ocean-driven basal melting of Antarctic ice shelves. Here, the ASF dynamics are investigated for continental shelves with weak dense shelf water (DSW) formation, which are thought to have a stable ASF, common for regions in East Antarctica. Using an ocean process model, this study demonstrates how offshore bottom Ekman transport of shelf waters leads to the development of a deep bottom mixed layer at the lower continental slope, and subsequently determines an intrinsic variability of the ASF. The ASF variability is characterized by instability events that affect the entire water column and occur every 5–10 years and last for approximately half a year. During these instability events, the cross-shelf density gradient weakens and CDW moves closer to the continent. Stronger winds increase the formation rate of the bottom mixed layer, which causes a subsequent increase of instability events. If the observed freshening trend of continental shelf waters leads to weaker DSW formation, more regions might be vulnerable for the ASF variability to develop in the future.


1987 ◽  
Vol 9 ◽  
pp. 241-242 ◽  
Author(s):  
Olav Orbeim

Relatively little data on the distribution of Antarctic icebergs were available prior to 1980. The published literature included size data of about 5000 icebergs, and position data of 12 000 icebergs. There were indications that the size data were biased in favour of larger icebergs. A programme of systematic iceberg observations was therefore initiated by Norsk Polarinstitutt in 198! through the SCAR Working Group on Glaciology. This programme is based on standard “blue” forms distributed to all ships going to Antarctica. The icebergs are recorded every 6 h and in Five length groups: 10–50, 50–200, 200–500, and 500–1000 m, and those over 1000 m are described individually. The amount of data has increased greatly from the start in 1981–82. The position of 70 000 icebergs, including 50 000 that had been size classified, were on file at Norsk Polarinstitutt by December 1985, and the data set is growing rapidly. Most ships travelling to and from Antarctica now participate in collection of the data. (Fig.1 shows the locations of the icebergs sighted.) Fig. 1. Location of iceberg observations under the programme initiated in 1981. Main ship tracks are clearly reflected. The average observation represents 14 icebergs. The size distribution of the classified icebergs observed under this programme up to December 1985 is given in Table I: Table I The “standard size” (length, width, and thickness) is based on our observations from three Antarctic expeditions which carried out dedicated iceberg studies. Many icebergs are of course not right-angled parallelepipedal in shape, but this is a good approximation for most of the larger icebergs. The data are based both on visual sightings and on radar observations. Duplicate observations from a ship moving at slow or zero speed are as far as possible eliminated, both during observation, and by critical appraisal before the data are filed. The data editing also includes evaluation of data quality, especially in connection with radar observations, and comparison of positions and dimensions of the large icebergs in order to reduce to a minimum repeated observations from different vessels of icebergs >1000 m. These account for most of the iceberg mass (see Table I). Consideration of iceberg-distribution patterns and the observed area of the Southern Ocean, and of duplicate observations, indicates more than 300 000 icebergs south of the Antarctic Convergence, with a total ice mass of about 1016 kg. Consideration of mean residence times indicates an annual iceberg production from the continent of 23–1015 kg, which is considerably higher than most other recent estimates. This also suggests that the Antarctic ice sheet is in balance. The data indicate large regional differences in iceberg sizes, the most noticeable being between the two sides of the Antarctic Peninsula, and between the Amery Ice Shelf/ Prydz Bay area and the remainder of East Antarctica. These differences are probably mainly related to different calving sites. About one-third of the observed icebergs are over the continental shelf of Antarctica. The total under-water area of these icebergs is two orders of magnitude less than the under-water area of the Antarctic ice shelves. The annual total iceberg melting and its effect on the water masses over the continental shelf has been calculated from ocean-water temperature variations at 200 m depth and estimated melt rates. This turns out to be an order of magnitude less than the annual effect of melting sea ice. The iceberg data considered here are probably under-represented with respect to the smallest sizes, and they do not include icebergs that have become <10 m. Inclusion of these ice bodies would increase the total melt.


2020 ◽  
Vol 50 (8) ◽  
pp. 2105-2122
Author(s):  
Louis-Philippe Nadeau ◽  
Malte F. Jansen

AbstractA toy model for the deep ocean overturning circulation in multiple basins is presented and applied to study the role of buoyancy forcing and basin geometry in the ocean’s global overturning. The model reproduces the results from idealized general circulation model simulations and provides theoretical insights into the mechanisms that govern the structure of the overturning circulation. The results highlight the importance of the diabatic component of the meridional overturning circulation (MOC) for the depth of North Atlantic Deep Water (NADW) and for the interbasin exchange of deep ocean water masses. This diabatic component, which extends the upper cell in the Atlantic below the depth of adiabatic upwelling in the Southern Ocean, is shown to be sensitive to the global area-integrated diapycnal mixing rate and the density contrast between NADW and Antarctic Bottom Water (AABW). The model also shows that the zonally averaged global overturning circulation is to zeroth-order independent of whether the ocean consists of one or multiple connected basins, but depends on the total length of the southern reentrant channel region (representing the Southern Ocean) and the global ocean area integrated diapycnal mixing. Common biases in single-basin simulations can thus be understood as a direct result of the reduced domain size.


2020 ◽  
Vol 50 (8) ◽  
pp. 2151-2172 ◽  
Author(s):  
Shantong Sun ◽  
Andrew F. Thompson ◽  
Ian Eisenman

AbstractClimate models consistently project (i) a decline in the formation of North Atlantic Deep Water (NADW) and (ii) a strengthening of the Southern Hemisphere westerly winds in response to anthropogenic greenhouse gas forcing. These two processes suggest potentially conflicting tendencies of the Atlantic meridional overturning circulation (AMOC): a weakening AMOC due to changes in the North Atlantic but a strengthening AMOC due to changes in the Southern Ocean. Here we focus on the transient evolution of the global ocean overturning circulation in response to a perturbation to the NADW formation rate. We propose that the adjustment of the Indo-Pacific overturning circulation is a critical component in mediating AMOC changes. Using a hierarchy of ocean and climate models, we show that the Indo-Pacific overturning circulation provides the first response to AMOC changes through wave processes, whereas the Southern Ocean overturning circulation responds on longer (centennial to millennial) time scales that are determined by eddy diffusion processes. Changes in the Indo-Pacific overturning circulation compensate AMOC changes, which allows the Southern Ocean overturning circulation to evolve independently of the AMOC, at least over time scales up to many decades. In a warming climate, the Indo-Pacific develops an overturning circulation anomaly associated with the weakening AMOC that is characterized by a northward transport close to the surface and a southward transport in the deep ocean, which could effectively redistribute heat between the basins. Our results highlight the importance of interbasin exchange in the response of the global ocean overturning circulation to a changing climate.


2010 ◽  
Vol 7 (3) ◽  
pp. 4045-4088 ◽  
Author(s):  
J. B. Palter ◽  
J. L. Sarmiento ◽  
A. Gnanadesikan ◽  
J. Simeon ◽  
D. Slater

Abstract. In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.


Sign in / Sign up

Export Citation Format

Share Document