Kelvin Waves around Antarctica

2014 ◽  
Vol 44 (11) ◽  
pp. 2909-2920 ◽  
Author(s):  
Kazuya Kusahara ◽  
Kay I. Ohshima

Abstract The Southern Ocean allows circumpolar structure and the Antarctic coastline plays a role as a waveguide for oceanic Kelvin waves. Under the cyclic conditions, the horizontal wavenumbers and frequencies for circumpolarly propagating waves are quantized, with horizontal wavenumbers 1, 2, and 3, corresponding to periods of about 32, 16, and 11 h, respectively. At these frequencies, westward-propagating signals are detected in sea level variation observed at Antarctic coastal stations. The occurrence frequency of westward-propagating signals far exceeds the statistical significance, and the phase speed of the observed signal agrees well with the theoretical phase speed of external Kelvin waves. Therefore, this study concludes that the observed, westward-propagating sea level variability is a signal of the external Kelvin waves of wavenumbers 1, 2, and 3 around Antarctica. A series of numerical model experiments confirms that Kelvin waves around Antarctica are driven by surface air pressure and that these waves are excited not only by local forcing over the Southern Ocean, but also by remote forcing over the Pacific Ocean. Sea level variations generated over the Pacific Ocean can travel to the western side of the South American coast and cross over Drake Passage to the Antarctic continent, constituting a part of the Kelvin waves around Antarctica.

2011 ◽  
Vol 57 (205) ◽  
pp. 785-788 ◽  
Author(s):  
Kelly M. Brunt ◽  
Emile A. Okal ◽  
Douglas R. MacAyeal

AbstractWe use European Space Agency Envisat data to present the first observational evidence that a Northern Hemisphere tsunami triggered Antarctic ice-shelf calving more than 13 000 km away. The Honshu tsunami of 11 March 2011 traversed the Pacific Ocean in <18 hours where it impinged on the Sulzberger Ice Shelf, resulting in the calving of 125 km2 of ice from a shelf front that had previously been stable for >46 years. This event further illustrates the growing evidence of ocean-wave impact on Antarctic calving and emphasizes the teleconnection between the Antarctic ice sheet and events as far away as the Northern Hemisphere.


2019 ◽  
Vol 36 (4) ◽  
pp. 689-698 ◽  
Author(s):  
Lingsheng Meng ◽  
Wei Zhuang ◽  
Weiwei Zhang ◽  
Angela Ditri ◽  
Xiao-Hai Yan

AbstractSea level changes within wide temporal–spatial scales have great influence on oceanic and atmospheric circulations. Efforts have been made to identify long-term sea level trend and regional sea level variations on different time scales. A nonuniform sea level rise in the tropical Pacific and the strengthening of the easterly trade winds from 1993 to 2012 have been widely reported. It is well documented that sea level in the tropical Pacific is associated with the typical climate modes. However, sea level change on interannual and decadal time scales still requires more research. In this study, the Pacific sea level anomaly (SLA) was decomposed into interannual and decadal time scales via an ensemble empirical mode decomposition (EEMD) method. The temporal–spatial features of the SLA variability in the Pacific were examined and were closely associated with climate variability modes. Moreover, decadal SLA oscillations in the Pacific Ocean were identified during 1993–2016, with the phase reversals around 2000, 2004, and 2012. In the tropical Pacific, large sea level variations in the western and central basin were a result of changes in the equatorial wind stress. Moreover, coherent decadal changes could also be seen in wind stress, sea surface temperature (SST), subtropical cells (STCs), and thermocline depth. Our work provided a new way to illustrate the interannual and decadal sea level variations in the Pacific Ocean and suggested a coupled atmosphere–ocean variability on a decadal time scale in the tropical region with two cycles from 1993 to 2016.


2020 ◽  
Author(s):  
Sara Berglund ◽  
Kristofer Döös ◽  
Jonas Nycander

&lt;p&gt;This study describes an important pathway of the thermohaline conveyor belt circulation and connects the geographical distribution of water masses with water mass transformation.&amp;#160;&lt;br&gt;In the Southern Ocean, cold and fresh water up-wells to the surface and returns northward, entering the Pacific, Atlantic and Indian Ocean. This reflects an important part of the thermohaline conveyor belt circulation. As the water flows northward, it changes temperature and salinity, and thus density. These changes can be caused either by internal mixing or air-sea interactions.&amp;#160;&lt;/p&gt;&lt;p&gt;In this study, Lagrangian trajectories are used to follow the pathway from Drake Passage to the warm Pacific Ocean. Trajectories are started in the Drake Passage, and are ended when they either reach 25$^\circ$C or return to the Drake Passage. The trajectories entering the Pacific Ocean follow the Antarctic circumpolar current and separate then into two pathways. The first enters the Pacific Ocean close to the South American coast and flows along the coast until it reaches 25$^\circ$C close to the equator. The second pathway, which corresponds to most of the total volume transport entering the Pacific, are subducted around 40$^\circ$S. The water then moves westward until it reaches Australia where it turns northward and ultimately joins the equatorial undercurrent.&amp;#160;&lt;/p&gt;&lt;p&gt;Along these two pathways, the water changes temperature and salinity, going from cold and fresh to warm and saline. Preliminary results indicate that the water mass transformation for the first pathway are due to air-sea interactions, and internal mixing for the second.&amp;#160;&lt;/p&gt;


2019 ◽  
Vol 38 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Albert Parker ◽  
Clifford Ollier

AbstractOver the past decades, detailed surveys of the Pacific Ocean atoll islands show no sign of drowning because of accelerated sea-level rise. Data reveal that no atoll lost land area, 88.6% of islands were either stable or increased in area, and only 11.4% of islands contracted. The Pacific Atolls are not being inundated because the sea level is rising much less than was thought. The average relative rate of rise and acceleration of the 29 long-term-trend (LTT) tide gauges of Japan, Oceania and West Coast of North America, are both negative, −0.02139 mm yr−1and −0.00007 mm yr−2respectively. Since the start of the 1900s, the sea levels of the Pacific Ocean have been remarkably stable.


2018 ◽  
Author(s):  
Qingwei Yang ◽  
Chen Gao ◽  
Yong Jiang ◽  
Min Wang ◽  
Xinhao Zhou ◽  
...  

AbstractViruses are the most abundant biological entities in aquatic ecosystems and harbor an enormous genetic diversity. While their great influence on the marine ecosystems is widely acknowledged, current information about their diversity remains scarce. Aviral metagenomic analysis of two surfaces and one bottom water sample was conducted from sites on the South Scotia Ridge (SSR) near the Antarctic Peninsula, during the austral summer 2016. The taxonomic composition and diversity of the viral communities were investigated and a functional assessment of the sequences was determined. Phylotypic analysis showed that most viruses belonging to the order Caudovirales, in particular, the family Podoviridae (41.92-48.7%), which is similar to the viral communities from the Pacific Ocean. Functional analysis revealed a relatively high frequency of phage-associated and metabolism genes. Phylogenetic analyses of phage TerL and Capsid_NCLDV (nucleocytoplasmic large DNA viruses) marker genes indicated that many of the sequences associated with Caudovirales and NCLDV were novel and distinct from known complete phage genomes. High Phaeocystis globosa virus virophage (Pgvv) signatures were found in SSR area and complete and partial Pgvv-like were obtained which may have an influence on host-virus interactions in the area during summer. Our study expands the existing knowledge of viral communities and their diversities from the Antarctic region and provides basic data for further exploring polar microbiomes.ImportanceIn this study, we used high-throughput sequencing and bioinformatics analysis to analyze the viral community structure and biodiversity of SSR in the open sea near the Antarctic Peninsula. The results showed that the SSR viromes are novel, oceanic-related viromes and a high proportion of sequence reads was classified as unknown. Among known virus counterparts, members of the order Caudovirales were most abundant which is consistent with viromes from the Pacific Ocean. In addition, phylogenetic analyses based on the viral marker genes (TerL and MCP) illustrate the high diversity among Caudovirales and NCLDV. Combining deep sequencing and a random subsampling assembly approach, a new Pgvv-like group was also found in this region, which may a signification factor regulating virus-host interactions.


Sign in / Sign up

Export Citation Format

Share Document