scholarly journals Wind-driven and buoyancy-driven circulation in the subtropical North Atlantic Ocean

Author(s):  
Harry L. Bryden

Continuous observations of ocean circulation at 26°N in the subtropical Atlantic Ocean have been made since April 2004 to quantify the strength and variability in the Atlantic Meridional overturning circulation (AMOC), in which warm, upper waters flow northward and colder deep waters below 1100 m depth return southward. The principal components of the AMOC are northward western boundary current transport in the Gulf Stream and Antilles Current, northward surface Ekman transport and southward thermocline recirculation, all of which are generally considered to be part of the wind-driven circulation. Southward flowing deep waters below 1100 m depth are usually considered to represent the buoyancy-driven circulation. We argue that the Gulf Stream is partially wind-driven but also partially buoyancy-driven as it returns upper waters upwelled in the global ocean back to water mass formation regions in the northern Atlantic. Seasonal to interannual variations in the circulation at 26°N are principally wind-driven. Variability in the buoyancy-driven circulation occurred in a sharp reduction in 2009 in the southward flow of Lower North Atlantic Deep Water when its transport decreased by 30% from pre-2009 values. Over the 14-year observational period from 2004 to 2018, the AMOC declined by 2.4 Sv from 18.3 to 15.9 Sv.

2015 ◽  
Vol 11 (4) ◽  
pp. 3597-3624 ◽  
Author(s):  
M. Ballarotta ◽  
F. Roquet ◽  
S. Falahat ◽  
Q. Zhang ◽  
G. Madec

Abstract. The oceanic geothermal heating (OGH) has a significant impact on the present-day ocean state, but its role during glacial periods, when the ocean circulation and stratification were different from those of today, remains poorly known. In the present study, we analyzed the response of the glacial ocean to OGH, by comparing ocean simulations of the Last Glacial Maximum (LGM, ∼ 21 ka ago) including or not geothermal heating. We found that applying the OGH warmed the Antarctic Bottom Waters (AABW) by ∼ 0.4 °C and increased the abyssal circulation by 15 to 30 % north of 30° S in the deep Pacific and Atlantic basins. The geothermally heated deep waters were then advected toward the Southern Ocean where they upwelled to the surface due to the Ekman transport. The extra heat transport towards Antarctica acted to reduce the amount of sea ice contributing to the freshening of the whole AABW overturning cell. The global amount of salt being conserved, this bottom freshening induced a salinification of the North Atlantic and North Pacific surface and intermediate waters, contributing to the deepening of the North Atlantic Deep Water. This indirect mechanism is responsible for the largest observed warming, found in the North Atlantic deep western boundary current between 2000 and 3000 m (up to 2 °C). The characteristic time scale of the ocean response to the OGH corresponds to an advective time scale (associated with the overturning of the AABW cell) rather than a diffusive time scale. The OGH might facilitate the transition from a glacial to an inter-glacial state but its effect on the deep stratification seems insufficient to drive alone an abrupt climate change.


2020 ◽  
Author(s):  
Caroline Katsman ◽  
Nils Brüggemann ◽  
Sotiria Georgiou ◽  
Juan-Manuel Sayol Espana ◽  
Stefanie Ypma ◽  
...  

<p>In the North Atlantic Ocean, intense downward motions connect the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC). In addition, the AMOC also displays a pronounced signature in density space, with lighter waters moving northward and denser waters returning southward.</p><p>While at first glance it is appealing to associate this sinking of water masses in the North Atlantic Ocean with the occurrence of the formation of dense water masses by deep convection, this is not correct: the net vertical motion over convection areas is small. The downward flow required to connect the upper and lower branches of the AMOC thus has to occur outside the deep convection areas. Indeed, earlier studies have pointed out theoretically that strong sinking can only occur close to continental boundaries, where ageostrophic processes play a role. However, observations clearly indicate that convected water masses formed in marginals seas constitute an important component of the lower limb of the AMOC.</p><p>This apparent contradiction is explored in this presentation, by studying the overturning in the AMOC from a perspective in depth space (Eulerian downwelling) and density space (downwelling across isopycnals). Based on analyses of both a high-resolution global ocean model and dedicated process studies using idealized models we analyze the characteristics of the sinking, of diapycnal mixing, and investigate how these are linked. </p><p>It appears that eddies play a crucial role for the overturning, both in depth space and density space. They control the characteristics of the yearly cycle of convection and restratification, the magnitude of the Eulerian sinking near continental boundaries, and steer the export of dense waters formed in the interior of the marginal seas via the boundary current system.</p><p>These studies thus reveal a complex three-dimensional view on sinking, diapycnal water mass transformation and overturning in the North Atlantic Ocean, involving the boundary current, the interior and interactions with the eddy field.  This implies that it is essential to resolve these eddies to be able to properly represent the overturning in depth and density space in the North Atlantic Ocean and its response to changing conditions in a future climate.</p>


2014 ◽  
Vol 32 (2) ◽  
pp. 241 ◽  
Author(s):  
Janini Pereira ◽  
Mariela Gabioux ◽  
Martinho Marta Almeida ◽  
Mauro Cirano ◽  
Afonso M. Paiva ◽  
...  

ABSTRACT. The results of two high-resolution ocean global circulation models – OGCMs (Hybrid Coordinate Ocean Model – HYCOM and Ocean Circulation andClimate Advanced Modeling Project – OCCAM) are analyzed with a focus on the Western Boundary Current (WBC) system of the South Atlantic Ocean. The volumetransports are calculated for different isopycnal ranges, which represent the most important water masses present in this region. The latitude of bifurcation of the zonalflows reaching the coast, which leads to the formation of southward or northward WBC flow at different depths (or isopycnal levels) is evaluated. For the Tropical Water,bifurcation of the South Equatorial Current occurs at 13◦-15◦S, giving rise to the Brazil Current, for the South Atlantic Central Water this process occurs at 22◦S.For the Antarctic Intermediate Water, bifurcation occurs near 28◦-30◦S, giving rise to a baroclinic unstable WBC at lower latitudes with a very strong vertical shearat mid-depths. Both models give similar results that are also consistent with previous observational studies. Observations of the South Atlantic WBC system havepreviously been sparse, consequently these two independent simulations which are based on realistic high-resolution OGCMs, add confidence to the values presentedin the literature regarding flow bifurcations at the Brazilian coast.Keywords: Southwestern Atlantic circulation, water mass, OCCAM, HYCOM. RESUMO. Resultados de dois modelos globais de alta resolução (HYCOM e OCCAM) são analisados focando o sistema de Corrente de Contorno Oeste do Oceano Atlântico Sul. Os transportes de volume são calculados para diferentes níveis isopicnais que representam as principais massas de água da região. É apresentada a avaliação da latitude de bifurcação do fluxo zonal que atinge a costa, permitindo a formação dos fluxos da Corrente de Contorno Oeste para o sul e para o norte emdiferentes níveis de profundidades (ou isopicnal). Para a Água Tropical, a bifurcação da Corrente Sul Equatorial ocorre entre 13◦-15◦S, originando a Corrente do Brasil, e para a Água Central do Atlântico Sul ocorre em 22◦S. A bifurcação daÁgua Intermediária Antártica ocorre próximo de 28◦-30◦S, dando um aumento na instabilidade baroclínica da Corrente de Contorno Oeste em baixas latitudes e com um forte cisalhamento vertical em profundidades intermediárias. Ambos os modelos apresentamresultados similares e consistentes com estudos observacionais prévios. Considerando que as observações do sistema de Corrente de Contorno Oeste do Atlântico Sul são escassas, essas duas simulações independentes com modelos globais de alta resolução adicionam confiança aos valores apresentados na literatura, relacionadosaos fluxos das bifurcações na costa do Brasil.Palavras-chave: circulação do Atlântico Sudoeste, massas de água, OCCAM, HYCOM.


2014 ◽  
Vol 44 (1) ◽  
pp. 179-201 ◽  
Author(s):  
Nicolas Barrier ◽  
Christophe Cassou ◽  
Julie Deshayes ◽  
Anne-Marie Treguier

Abstract A new framework is proposed for investigating the atmospheric forcing of North Atlantic Ocean circulation. Instead of using classical modes of variability, such as the North Atlantic Oscillation (NAO) or the east Atlantic pattern, the weather regimes paradigm was used. Using this framework helped avoid problems associated with the assumptions of orthogonality and symmetry that are particular to modal analysis and known to be unsuitable for the NAO. Using ocean-only historical and sensitivity experiments, the impacts of the four winter weather regimes on horizontal and overturning circulations were investigated. The results suggest that the Atlantic Ridge (AR), negative NAO (NAO−), and positive NAO (NAO+) regimes induce a fast (monthly-to-interannual time scales) adjustment of the gyres via topographic Sverdrup dynamics and of the meridional overturning circulation via anomalous Ekman transport. The wind anomalies associated with the Scandinavian blocking regime (SBL) are ineffective in driving a fast wind-driven oceanic adjustment. The response of both gyre and overturning circulations to persistent regime conditions was also estimated. AR causes a strong, wind-driven reduction in the strengths of the subtropical and subpolar gyres, while NAO+ causes a strengthening of the subtropical gyre via wind stress curl anomalies and of the subpolar gyre via heat flux anomalies. NAO− induces a southward shift of the gyres through the southward displacement of the wind stress curl. The SBL is found to impact the subpolar gyre only via anomalous heat fluxes. The overturning circulation is shown to spin up following persistent SBL and NAO+ and to spin down following persistent AR and NAO− conditions. These responses are driven by changes in deep water formation in the Labrador Sea.


2021 ◽  
Author(s):  
Robin Waldman ◽  
Christophe Cassou ◽  
Aurore Voldoire

<p>In global climate models, low-frequency natural variability related to the Atlantic Ocean overturning circulation is a common behaviour. Such intrinsic climate variability is a potential source of decadal climate predictability. However, over longer term scenario simulations, this natural variability becomes a major source of uncertainty. In this study, we document a large and sustained centennial variability in the 3500-year pre-industrial control run of the CNRM-CM6 coupled climate model which is driven by the North Atlantic ocean, and more specifically its meridional overturning circulation (AMOC). We propose a new AMOC dynamical decomposition highlighting the dominant role of mid-depth density anomalies at the western boundary as the driver of this centennial variability. We relate such density variability to deep convection and overflows in the western subpolar gyre, themselves controlled by and intense salinity variability of the upper layers. Finally, we show that such salinity variability is the result of periodic freshwater recharge and descharge events from the Arctic Ocean, themselves triggered by stochastic atmospheric forcing.</p>


2008 ◽  
Vol 38 (9) ◽  
pp. 1913-1930 ◽  
Author(s):  
Armin Köhl ◽  
Detlef Stammer

Abstract The German partner of the consortium for Estimating the Circulation and Climate of the Ocean (GECCO) provided a dynamically consistent estimate of the time-varying ocean circulation over the 50-yr period 1952–2001. The GECCO synthesis combines most of the data available during the entire estimation period with the ECCO–Massachusetts Institute of Technology (MIT) ocean circulation model using its adjoint. This GECCO estimate is analyzed here for the period 1962–2001 with respect to decadal and longer-term changes of the meridional overturning circulation (MOC) of the North Atlantic. A special focus is on the maximum MOC values at 25°N. Over this period, the dynamically self-consistent synthesis stays within the error bars of H. L. Bryden et al., but reveals a general increase of the MOC strength. The variability on decadal and longer time scales is decomposed into contributions from different processes. Changes in the model’s MOC strength are strongly influenced by the southward communication of density anomalies along the western boundary originating from the subpolar North Atlantic, which are related to changes in the Denmark Strait overflow but are only marginally influenced by water mass formation in the Labrador Sea. The influence of density anomalies propagating along the southern edge of the subtropical gyre associated with baroclinically unstable Rossby waves is found to be equally important. Wind-driven processes such as local Ekman transport explain a smaller fraction of the variability on those long time scales.


2013 ◽  
Vol 26 (18) ◽  
pp. 7167-7186 ◽  
Author(s):  
Carl Wunsch ◽  
Patrick Heimbach

Abstract The zonally integrated meridional volume transport in the North Atlantic [Atlantic meridional overturning circulation (AMOC)] is described in a 19-yr-long ocean-state estimate, one consistent with a diverse global dataset. Apart from a weak increasing trend at high northern latitudes, the AMOC appears statistically stable over the last 19 yr with fluctuations indistinguishable from those of a stationary Gaussian stochastic process. This characterization makes it possible to study (using highly developed tools) extreme values, predictability, and the statistical significance of apparent trends. Gaussian behavior is consistent with the central limit theorem for a process arising from numerous independent disturbances. In this case, generators include internal instabilities, changes in wind and buoyancy forcing fields, boundary waves, the Gulf Stream and deep western boundary current transports, the interior fraction in Sverdrup balance, and all similar phenomena arriving as summation effects from long distances and times. As a zonal integral through the sum of the large variety of physical processes in the three-dimensional ocean circulation, understanding of the AMOC, if it is of central climate importance, requires breaking it down into its unintegrated components over the entire basin.


2021 ◽  
Author(s):  
Daniel Santana-Toscano ◽  
M. Dolores Pérez-Hernández ◽  
Verónica Caínzos ◽  
Melania Cubas Armas ◽  
Cristina Arumí-Planas ◽  
...  

<p>The A20 is a meridional hydrographic section located at 52ºW on the western North Atlantic Subtropical Gyre that encloses the path of the water masses of the Atlantic Meridional Overturning Circulation (AMOC). Using data from three A20 hydrographic cruises carried out in 1997, 2003 and 2012 together with LADCP-SADCP data and the velocities from an inverse box model, the circulation of the western North Atlantic Subtropical Gyre is estimated. The main poleward current of the AMOC is the Gulf Stream (GS) which carries 129.0±10.5 Sv in 2003 and 110.4±12.2 Sv in 2012. Due to the seasonality, the GS position is shifted southward in 2012 - relative to that of 2003 - as both cruises took place in different seasons. In opposite direction, the Deep Western Boundary Current (DWBC) crosses the section twice, first at 39.3-43.2ºN (-34.9±7.5 Sv in 2003 and -25.3±9.4 Sv in 2012) and then at 7.0-11.7ºN (42.0±8.0 Sv in 2003 and 48.0±8.1 Sv in 2012). Additionally, two zonal currents contribute with westward transport below 20ºN: the North Equatorial Current and the North Brazil Current; with a net value of -28.0±4.1 Sv in 2003 and -36.7±3.6 Sv in 2012.</p>


2010 ◽  
Vol 7 (2) ◽  
pp. 919-971
Author(s):  
C. P. Atkinson ◽  
H. L. Bryden ◽  
J. J.-M. Hirschi ◽  
T. Kanzow

Abstract. Since April 2004 the RAPID array has made continuous measurements of the Atlantic Meridional Overturning Circulation (AMOC) at 26° N. Two key components of this system are Ekman transport zonally integrated across 26° N and western boundary current transport in the Florida Straits. Whilst measurements of the AMOC as a whole are somewhat in their infancy, this study investigates what useful information can be extracted on the variability of the Ekman and Florida Straits transports using the decadal timeseries already available. Analysis is also presented for Sverdrup transports zonally integrated across 26° N. The seasonal cycles of Florida Straits, Ekman and Sverdrup transports are quantified at 26° N using harmonic analysis of annual and semi-annual constituents. Whilst Sverdrup transport shows clear semi-annual periodicity, calculations of seasonal Florida Straits and Ekman transports show substantial interannual variability due to variability at non-seasonal frequencies; the mean seasonal cycle for these transports only emerges from decadal length observations. The Florida Straits and Ekman mean seasonal cycles project on the AMOC with a combined peak-to-peak seasonal range of 3.5 Sv. The combined seasonal range for heat transport is 0.40 PW. The Florida Straits seasonal cycle possesses a smooth annual periodicity in contrast with previous studies suggesting a more asymmetric structure. No clear evidence is found to support significant changes in the Florida Straits seasonal cycle at sub-decadal periods. Whilst evidence of wind driven Florida Straits transport variability is seen at sub-seasonal and annual periods, model runs from the 1/4° eddy-permitting ocean model NEMO are used to identify an important contribution from internal oceanic variability at sub-annual and interannual periods. The Ekman transport seasonal cycle possesses less symmetric structure, due in part to different seasonal transport regimes east and west of 50 to 60° W. Around 60% of non-seasonal Ekman transport variability occurs in phase section-wide at 26° N and is related to the NAO, whilst Sverdrup transport variability is more difficult to decompose.


Sign in / Sign up

Export Citation Format

Share Document