Frontal Instability and Energy Dissipation in a Submesoscale Upwelling Filament

2020 ◽  
Vol 50 (7) ◽  
pp. 2017-2035 ◽  
Author(s):  
Jen-Ping Peng ◽  
Peter Holtermann ◽  
Lars Umlauf

AbstractBased on high-resolution turbulence microstructure and near-surface velocity data, frontal instability and its relation to turbulence are investigated inside a transient upwelling filament in the Benguela upwelling system (southeast Atlantic). The focus of our study is a sharp submesoscale front located at the edge of the filament, characterized by persistent downfront winds, a strong frontal jet, and vigorous turbulence. Our analysis reveals three distinct frontal stability regimes. (i) On the light side of the front, a 30–40-m-deep turbulent surface layer with low potential vorticity (PV) was identified. This low-PV region exhibited a well-defined two-layer structure with a convective (Ekman-forced) upper layer and a stably stratified lower layer, where turbulence was driven by forced symmetric instability (FSI). Dissipation rates in this region scaled with the Ekman buoyancy flux, in excellent quantitative agreement with recent numerical simulations of FSI. (ii) Inside the cyclonic flank of the frontal jet, near the maximum of the cross-front density gradient, the cyclonic vorticity was sufficiently strong to suppress FSI. Turbulence in this region was driven by marginal shear instability. (iii) Inside the anticyclonic flank of the frontal jet, conditions for mixed inertial/symmetric instability were satisfied. Our data provide direct evidence for the relevance of FSI, inertial instability, and marginal shear instability for overall kinetic energy dissipation in submesoscale fronts and filaments.

2021 ◽  
Vol 13 (14) ◽  
pp. 2684
Author(s):  
Eldert Fokker ◽  
Elmer Ruigrok ◽  
Rhys Hawkins ◽  
Jeannot Trampert

Previous studies examining the relationship between the groundwater table and seismic velocities have been guided by empirical relationships only. Here, we develop a physics-based model relating fluctuations in groundwater table and pore pressure with seismic velocity variations through changes in effective stress. This model justifies the use of seismic velocity variations for monitoring of the pore pressure. Using a subset of the Groningen seismic network, near-surface velocity changes are estimated over a four-year period, using passive image interferometry. The same velocity changes are predicted by applying the newly derived theory to pressure-head recordings. It is demonstrated that the theory provides a close match of the observed seismic velocity changes.


2001 ◽  
Vol 428 ◽  
pp. 349-386 ◽  
Author(s):  
E. J. STRANG ◽  
H. J. S. FERNANDO

The results of a laboratory experiment designed to study turbulent entrainment at sheared density interfaces are described. A stratified shear layer, across which a velocity difference ΔU and buoyancy difference Δb is imposed, separates a lighter upper turbulent layer of depth D from a quiescent, deep lower layer which is either homogeneous (two-layer case) or linearly stratified with a buoyancy frequency N (linearly stratified case). In the parameter ranges investigated the flow is mainly determined by two parameters: the bulk Richardson number RiB = ΔbD/ΔU2 and the frequency ratio fN = ND=ΔU.When RiB > 1.5, there is a growing significance of buoyancy effects upon the entrainment process; it is observed that interfacial instabilities locally mix heavy and light fluid layers, and thus facilitate the less energetic mixed-layer turbulent eddies in scouring the interface and lifting partially mixed fluid. The nature of the instability is dependent on RiB, or a related parameter, the local gradient Richardson number Rig = N2L/ (∂u/∂z)2, where NL is the local buoyancy frequency, u is the local streamwise velocity and z is the vertical coordinate. The transition from the Kelvin–Helmholtz (K-H) instability dominated regime to a second shear instability, namely growing Hölmböe waves, occurs through a transitional regime 3.2 < RiB < 5.8. The K-H activity completely subsided beyond RiB ∼ 5 or Rig ∼ 1. The transition period 3.2 < RiB < 5 was characterized by the presence of both K-H billows and wave-like features, interacting with each other while breaking and causing intense mixing. The flux Richardson number Rif or the mixing efficiency peaked during this transition period, with a maximum of Rif ∼ 0.4 at RiB ∼ 5 or Rig ∼ 1. The interface at 5 < RiB < 5.8 was dominated by ‘asymmetric’ interfacial waves, which gradually transitioned to (symmetric) Hölmböe waves at RiB > 5:8.Laser-induced fluorescence measurements of both the interfacial buoyancy flux and the entrainment rate showed a large disparity (as large as 50%) between the two-layer and the linearly stratified cases in the range 1.5 < RiB < 5. In particular, the buoyancy flux (and the entrainment rate) was higher when internal waves were not permitted to propagate into the deep layer, in which case more energy was available for interfacial mixing. When the lower layer was linearly stratified, the internal waves appeared to be excited by an ‘interfacial swelling’ phenomenon, characterized by the recurrence of groups or packets of K-H billows, their degeneration into turbulence and subsequent mixing, interfacial thickening and scouring of the thickened interface by turbulent eddies.Estimation of the turbulent kinetic energy (TKE) budget in the interfacial zone for the two-layer case based on the parameter α, where α = (−B + ε)/P, indicated an approximate balance (α ∼ 1) between the shear production P, buoyancy flux B and the dissipation rate ε, except in the range RiB < 5 where K-H driven mixing was active.


Author(s):  
Yuefeng Yan ◽  
Chengyu Sun ◽  
Tengfei Lin ◽  
Jiao Wang ◽  
Jidong Yang ◽  
...  

Abstract In exploration and earthquake seismology, most sources used in subsurface structure imaging and rock property estimation are fixed in certain positions. Continuously moving seismic sources, such as vehicles and the metro, are one kind of important passive sources in ambient noise research. Commonly, seismic data acquisition and processing for moving sources are based on the assumption of simple point passive sources, and the dispersion curve inversion is applied to constrain near-surface velocity. This workflow neglects the Doppler effects. Considering the continuously moving properties of the sources, we first derive the analytical solution for the Rayleigh waves excited by heavy vehicles and then analyze their Doppler effects and dispersion curves. We observe that the moving source data have the Doppler effect when compared with the changes in the frequency of the source intensity, but this effect does not affect the frequency dispersion of Rayleigh waves. The dispersion curves computed for moving source records are consistent with the analytical dispersion solutions, which provide a theoretical foundation for velocity estimation using moving source data.


2014 ◽  
Vol 14 (11) ◽  
pp. 15953-16000 ◽  
Author(s):  
E. M. Neemann ◽  
E. T. Crosman ◽  
J. D. Horel ◽  
L. Avey

Abstract. Numerical simulations are used to investigate the meteorological characteristics of the 1–6 February 2013 cold-air pool in the Uintah Basin, Utah, and the resulting high ozone concentrations. Flow features affecting cold-air pools and air quality in the Uintah Basin are studied, including: penetration of clean air into the basin from across the surrounding mountains, elevated easterlies within the inversion layer, and thermally-driven slope and valley flows. The sensitivity of the boundary layer structure to cloud microphysics and snow cover variations are also examined. Ice-dominant clouds enhance cold-air pool strength compared to liquid-dominant clouds by increasing nocturnal cooling and decreasing longwave cloud forcing. Snow cover increases boundary layer stability by enhancing the surface albedo, reducing the absorbed solar insolation at the surface, and lowering near-surface air temperatures. Snow cover also increases ozone levels by enhancing solar radiation available for photochemical reactions.


2020 ◽  
Vol 13 (12) ◽  
pp. 6965-6987
Author(s):  
Jae-Sik Min ◽  
Moon-Soo Park ◽  
Jung-Hoon Chae ◽  
Minsoo Kang

Abstract. Accurate boundary layer structure and height are critical in the analysis of the features of air pollutants and local circulation. Although surface-based remote sensing instruments provide a high temporal resolution of the boundary layer structure, there are numerous uncertainties in terms of the accurate determination of the atmospheric boundary layer heights (ABLHs). In this study, an algorithm for an integrated system for ABLH estimation (ISABLE) was developed and applied to the vertical profile data obtained using a ceilometer and a microwave radiometer in Seoul city, Korea. A maximum of 19 ABLHs were estimated via the conventional time-variance, gradient, wavelet, and clustering methods using the backscatter coefficient from the ceilometer. Meanwhile, several stable boundary layer heights were extracted through near-surface inversion and environmental lapse rate methods using the potential temperature from the microwave radiometer. The ISABLE algorithm can find an optimal ABLH from post-processing, such as k-means clustering and density-based spatial clustering of applications with noise (DBSCAN) techniques. It was found that the ABLH determined using ISABLE exhibited more significant correlation coefficients and smaller mean bias and root mean square error between the radiosonde-derived ABLHs than those obtained using the most conventional methods. Clear skies exhibited higher daytime ABLH than cloudy skies, and the daily maximum ABLH was recorded in summer because of the more intense radiation. The ABLHs estimated by ISABLE are expected to contribute to the parameterization of vertical diffusion in the atmospheric boundary layer.


Geophysics ◽  
1961 ◽  
Vol 26 (6) ◽  
pp. 754-760 ◽  
Author(s):  
Pierre L. Goupillaud

This paper suggests a scheme for compensating the effects that the near‐surface stratification, variable from spread to spread, produces on both the character and the timing of the seismic traces. For this purpose, accurate near‐surface velocity information is mandatory. This scheme should greatly reduce the correlation difficulties so frequently encountered in many areas. It may also be used to enhance the resolving power of the seismic reflection technique. The approach presented here is based on the rather restrictive assumptions of normal incidence, parallel equispaced plant reflectors, and noiseless conditions.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. U1-U8 ◽  
Author(s):  
Benoit de Cacqueray ◽  
Philippe Roux ◽  
Michel Campillo ◽  
Stefan Catheline

We tested a small-scale experiment that is dedicated to the study of the wave separation algorithm and to the velocity variations monitoring problem itself. It handles the case in which velocity variations at depth are hidden by near-surface velocity fluctuations. Using an acquisition system that combines an array of sources and an array of receivers, coupled with controlled velocity variations, we tested the ability of beam-forming techniques to track velocity variations separately for body waves and surface waves. After wave separation through double beam forming, the arrival time variations of the different waves were measured through the phase difference between the extracted wavelets. Finally, a method was tested to estimate near-surface velocity variations using surface waves or shallow reflection and compute a correction to isolate target velocity variations at depth.


Author(s):  
Jonathan Kweder ◽  
Mary Ann Clarke ◽  
James E. Smith

Circulation control (CC) is a high-lift methodology that can be used on a variety of aerodynamic applications. This technology has been in the research and development phase for over sixty years primarily for fixed wing aircraft where the early models were referred to as “blown flaps”. Circulation control works by increasing the near surface velocity of the airflow over the leading edge and/or trailing edge of a lifting surface This phenomenon keeps the boundary layer jet attached to the wing surface thus increasing the lift generated on the surface. The circulation control airflow adds energy to the lift force through conventional airfoil lift production and by altering the circulation of stream lines around the airfoil. For this study, a 10:1 aspect ratio elliptical airfoil with a chord length of 11.8 inches and a span of 31.5 inches was inserted into the West Virginia University Closed Loop Wind Tunnel and was tested at varying wind speeds (80, 100, and 120 feet per second), angle of attack (zero to sixteen degrees), and blowing coefficients, ranging from 0.0006 to 0.0127 depending on plenum pressure. By comparing the non-circulation controlled wing with the active circulation control data, a trend was found as to the influence of circulation control on the stall characteristics of the wing for trailing edge active control. For this specific case, when the circulation control is in use on the 10:1 elliptical airfoil, the stall angle decreased, from eight degrees to six degrees, while providing a 70% increase in lift coefficient. It should be noted that due to the trailing edge location of the circulation control exit jet, a “virtual” camber is created with the free stream air adding length to the overall airfoil. Due to this phenomena, the actual stall angle measured increased from eight degrees on the un-augmented airfoil, to a maximum of twelve degrees.


Sign in / Sign up

Export Citation Format

Share Document