scholarly journals A study of intermediate water circulation in the Strait of Georgia using tracer-based, Eulerian, and Lagrangian methods

Author(s):  
S. W. Stevens ◽  
R. Pawlowicz ◽  
S. E. Allen

AbstractThe intermediate circulation of the Strait of Georgia, British Columbia, Canada, plays a key role in dispersing contaminants throughout the Salish Sea, yet little is known about its dynamics. Here, we use hydrographic observations and hindcast fields from a regional 3D model to approach the intermediate circulation from three perspectives. Firstly, we derive and model a “seasonality” tracer from temperature observations to age the water, estimate mixing, and infer circulation. Secondly, we analyze modeled velocity fields to create mean current maps and examine the advective and diffusive components of the mean flow field. Lastly, we calculate Lagrangian trajectories to derive Transit Time Distributions and Lagrangian statistics. In combination, these analyses provide an overview of the mean intermediate circulation that can be summarized as follows: subducting water in Haro Strait ventilates the intermediate water primarily via an up-strait boundary current that flows along the eastern shores of the southernmost basin in 1–2 months. This inflowing water is either incorporated into the interior of the basin, recirculated southwards, or transported into the northernmost basin, mixing steadily with adjacent water masses during its transit. A second, shallower ventilating jet emanates southwards from Discovery Passage, locally modifying the Haro Strait inflow signal. Outside of these well-defined advective features, diffusive transport dominates in the majority of the region. The intermediate renewal signal fully ventilates the region in 100–140 days, which serves as a benchmark for contaminant dispersal timescale estimates.

2014 ◽  
Vol 745 ◽  
pp. 647-681 ◽  
Author(s):  
Yee Chee See ◽  
Matthias Ihme

AbstractLocal linear stability analysis has been shown to provide valuable information about the response of jet diffusion flames to flow-field perturbations. However, this analysis commonly relies on several modelling assumptions about the mean flow prescription, the thermo-viscous-diffusive transport properties, and the complexity and representation of the chemical reaction mechanisms. In this work, the effects of these modelling assumptions on the stability behaviour of a jet diffusion flame are systematically investigated. A flamelet formulation is combined with linear stability theory to fully account for the effects of complex transport properties and the detailed reaction chemistry on the perturbation dynamics. The model is applied to a methane–air jet diffusion flame that was experimentally investigated by Füriet al.(Proc. Combust. Inst., vol. 29, 2002, pp. 1653–1661). Detailed simulations are performed to obtain mean flow quantities, about which the stability analysis is performed. Simulation results show that the growth rate of the inviscid instability mode is insensitive to the representation of the transport properties at low frequencies, and exhibits a stronger dependence on the mean flow representation. The effects of the complexity of the reaction chemistry on the stability behaviour are investigated in the context of an adiabatic jet flame configuration. Comparisons with a detailed chemical-kinetics model show that the use of a one-step chemistry representation in combination with a simplified viscous-diffusive transport model can affect the mean flow representation and heat release location, thereby modifying the instability behaviour. This is attributed to the shift in the flame structure predicted by the one-step chemistry model, and is further exacerbated by the representation of the transport properties. A pinch-point analysis is performed to investigate the stability behaviour; it is shown that the shear-layer instability is convectively unstable, while the outer buoyancy-driven instability mode transitions from absolutely to convectively unstable in the nozzle near field, and this transition point is dependent on the Froude number.


2009 ◽  
Vol 16 (3) ◽  
pp. 381-392 ◽  
Author(s):  
G. M. Reznik ◽  
V. Zeitlin

Abstract. Nonlinear interactions of the barotropic Rossby waves propagating across the equator with trapped baroclinic Rossby or Yanai modes and mean zonal flow are studied within the two-layer model of the atmosphere, or the ocean. It is shown that the equatorial waveguide with a mean current acts as a resonator and responds to barotropic waves with certain wavenumbers by making the trapped baroclinic modes grow. At the same time the equatorial waveguide produces the barotropic response which, via nonlinear interaction with the mean equatorial current and with the trapped waves, leads to the saturation of the growing modes. The excited baroclinic waves can reach significant amplitudes depending on the magnitude of the mean current. In the absence of spatial modulation the nonlinear saturation of thus excited waves is described by forced Landau-type equation with one or two attracting equilibrium solutions. In the latter case the spatial modulation of the baroclinic waves is expected to lead to the formation of characteristic domain-wall defects. The evolution of the envelopes of the trapped Rossby waves is governed by driven Ginzburg-Landau equation, while the envelopes of the Yanai waves obey the "first-order" forced Ginzburg-Landau equation. The envelopes of short baroclinic Rossby waves obey the damped-driven nonlinear Schrodinger equation well studied in the literature.


2015 ◽  
Vol 45 (3) ◽  
pp. 690-715 ◽  
Author(s):  
Jonathan Gula ◽  
M. Jeroen Molemaker ◽  
James C. McWilliams

AbstractThe Gulf Stream strongly interacts with the topography along the southeastern U.S. seaboard, between the Straits of Florida and Cape Hatteras. The dynamics of the Gulf Stream in this region is investigated with a set of realistic, very high-resolution simulations using the Regional Ocean Modeling System (ROMS). The mean path is strongly influenced by the topography and in particular the Charleston Bump. There are significant local pressure anomalies and topographic form stresses exerted by the bump that retard the mean flow and steer the mean current pathway seaward. The topography provides, through bottom pressure torque, the positive input of barotropic vorticity necessary to balance the meridional transport of fluid and close the gyre-scale vorticity balance. The effect of the topography on the development of meanders and eddies is studied by computing energy budgets of the eddies and the mean flow. The baroclinic instability is stabilized by the slope everywhere except past the bump. The flow is barotropically unstable, and kinetic energy is converted from the mean flow to the eddies following the Straits of Florida and at the bump with regions of eddy-to-mean conversion in between. There is eddy growth by Reynolds stress and downstream development of the eddies. Interaction of the flow with the topography acts as an external forcing process to localize these oceanic storm tracks. Associated time-averaged eddy fluxes are essential to maintain and reshape the mean current. The pattern of eddy fluxes is interpreted in terms of eddy life cycle, eddy fluxes being directed downgradient in eddy growth regions and upgradient in eddy decay regions.


2018 ◽  
Vol 48 (9) ◽  
pp. 2057-2080 ◽  
Author(s):  
Jinliang Liu ◽  
Jun-Hong Liang ◽  
James C. McWilliams ◽  
Peter P. Sullivan ◽  
Yalin Fan ◽  
...  

AbstractA large-eddy simulation (LES) model is configured to investigate the effect of the horizontal (northward) component of Earth’s rotation on upper-ocean turbulence. The focus is on the variability of the effect with latitude/hemisphere in the presence of surface gravity waves and when capped by a stable stratification beneath the surface layer. When is included, the mean flow, turbulence, and vertical mixing depend on the wind direction. The value and effect of are the largest in the tropics and decrease with increasing latitudes. The variability in turbulent flows to wind direction is different at different latitudes and in opposite hemispheres. When limited by stable stratification, the variability in turbulence intensity to wind direction reduces, but the entrainment rate changes with wind direction. In wave-driven Langmuir turbulence, the variability in mean current to wind direction is reduced, but the variability of turbulence to wind direction is evident. When there is wind-following swell, the variability in the mean current to wind direction is further reduced. When there is strong wind-opposing swell so that the total wave forcing is opposite to the wind, the variability in the mean current to wind direction is reduced, but the variability of turbulence to wind direction is enhanced, compared to in Ekman turbulence. The profiles of eddy viscosity, including its shape and its value, show a strong wind direction dependence for both stratified wind-driven and wave-driven Langmuir turbulence. Our study demonstrates that wind direction is an important parameter to upper-ocean mixing, though it is overlooked in existing ocean models.


Ocean Science ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 331-343 ◽  
Author(s):  
M. Menna ◽  
P. M. Poulain

Abstract. Data from 38 Argo profiling floats are used to describe the intermediate Mediterranean currents for the period October 2003–January 2010. These floats were programmed to execute 5-day cycles, to drift at a neutral parking depth of 350 m and measure temperature and salinity profiles from either 700 or 2000 m up to the surface. At the end of each cycle the floats remained at the sea surface for about 6 h, enough time to be localised and transmit the data to the Argos satellite system. The Argos positions were used to determine the float surface and intermediate displacements. At the surface, the float motion was approximated by a linear displacement and inertial motion. Intermediate velocities estimates were used to investigate the Mediterranean circulation at 350 m, to compute the pseudo-Eulerian statistics and to study the influence of bathymetry on the intermediate currents. Maximum speeds, as large as 33 cm/s, were found northeast of the Balearic Islands (western basin) and in the Ierapetra eddy (eastern basin). Typical speeds in the main along-slope currents (Liguro-Provençal-Catalan, Algerian and Libyo-Egyptian Currents) were ~20 cm/s. In the central and western part of Mediterranean basin, the pseudo-Eulerian statistics show typical intermediate circulation pathways which can be related to the motion of Levantine Intermediate Water. In general our results agree with the qualitative intermediate circulation schemes proposed in the literature, except in the southern Ionian where we found westward-flowing intermediate currents. Fluctuating currents appeared to be usually larger than the mean flow. Intermediate currents were found to be essentially parallel to the isobaths over most of the areas characterized by strong bathymetry gradients, in particular, in the vicinity of the continental slopes.


1982 ◽  
Vol 123 ◽  
pp. 237-265 ◽  
Author(s):  
Melvin E. Stern ◽  
John A. Whitehead ◽  
Bach-Lien Hua

When light rotating fluid spreads over heavier fluid in the vicinity of a vertical wall (coast) a boundary jet of width Λ forms, the leading edge or nose of which propagates with speed ĉ along the coast. A certain fraction 8 of the boundary transport is not carried by the nose but is deflected backwards (detrained) and left behind the propagating nose. Theoretical and experimental results for Λ,ĉ, and δ are given for a quasi-equilibrium (constant-ĉ) regime. Over longer time intervals the laboratory observations suggest that the nose slows down and stagnates, whereupon the trailing flow separates from the coast and an intermittent boundary current forms. These processes may be relevant to the mixing of oceanic coastal currents and the maintenance of the mean current.


2013 ◽  
Vol 43 (8) ◽  
pp. 1666-1690 ◽  
Author(s):  
Stephanie Waterman ◽  
Brian J. Hoskins

Abstract This manuscript revisits a study of eddy–mean flow interactions in an idealized model of a western boundary current extension jet using properties of the horizontal velocity correlation tensor to diagnose characteristics of average eddy shape, orientation, propagation, and mean flow feedback. These eddy characteristics are then used to provide a new description of the eddy–mean flow interactions observed in terms of different ingredients of the eddy motion. The diagnostics show patterns in average eddy shape, orientation, and propagation that are consistent with the signatures of jet instability in the upstream region and wave radiation in the downstream region. Together they give a feedback onto the mean flow that gives the downstream character of the jet and drives the jet's recirculation gyres. A breakdown of the eddy forcing into contributions from individual terms confirms the expected role of cross-jet gradients in meridional eddy tilt in stabilizing the jet to its barotropic instability; however, it also reveals important roles played by the along-jet evolution of eddy zonal–meridional elongation. It is the mean flow forcing derived from these patterns that acts to strengthen and extend the jet downstream and forces the time-mean recirculation gyres. This understanding of the dependence of mean flow forcing on eddy structural properties suggests that failure to adequately resolve eddy elongation could underlie the weakened jet strength, extent, and changed recirculation structure seen in this idealized model for reduced spatial resolutions. Further, it may suggest new ideas for the parameterization of this forcing.


2019 ◽  
Vol 49 (3) ◽  
pp. 751-764 ◽  
Author(s):  
Veit Lüschow ◽  
Jin-Song von Storch ◽  
Jochem Marotzke

AbstractUsing a 0.1° ocean model, this paper establishes a consistent picture of the interaction of mesoscale eddy density fluxes with the geostrophic deep western boundary current (DWBC) in the Atlantic between 26°N and 20°S. Above the DWBC core (the level of maximum southward flow, ~2000-m depth), the eddies flatten isopycnals and hence decrease the potential energy of the mean flow, which agrees with their interpretation and parameterization in the Gent–McWilliams framework. Below the core, even though the eddy fluxes have a weaker magnitude, they systematically steepen isopycnals and thus feed potential energy to the mean flow, which contradicts common expectations. These two vertically separated eddy regimes are found through an analysis of the eddy density flux divergence in stream-following coordinates. In addition, pathways of potential energy in terms of the Lorenz energy cycle reveal this regime shift. The twofold eddy effect on density is balanced by an overturning in the plane normal to the DWBC. Its direction is clockwise (with upwelling close to the shore and downwelling further offshore) north of the equator. In agreement with the sign change in the Coriolis parameter, the overturning changes direction to anticlockwise south of the equator. Within the domain covered in this study, except in a narrow band around the equator, this scenario is robust along the DWBC.


2019 ◽  
Vol 49 (12) ◽  
pp. 3127-3143 ◽  
Author(s):  
Dante C. Napolitano ◽  
Ilson C. A. da Silveira ◽  
Cesar B. Rocha ◽  
Glenn R. Flierl ◽  
Paulo H. R. Calil ◽  
...  

AbstractThe Intermediate Western Boundary Current (IWBC) transports Antarctic Intermediate Water across the Vitória–Trindade Ridge (VTR), a seamount chain at ~20°S off Brazil. Recent studies suggest that the IWBC develops a strong cyclonic recirculation in Tubarão Bight, upstream of the VTR, with weak time dependency. We herein use new quasi-synoptic observations, data from the Argo array, and a regional numerical model to describe the structure and variability of the IWBC and to investigate its dynamics. Both shipboard acoustic Doppler current profiler (ADCP) data and trajectories of Argo floats confirm the existence of the IWBC recirculation, which is also captured by our Regional Oceanic Modeling System (ROMS) simulation. An “intermediate-layer” quasigeostrophic (QG) model indicates that the ROMS time-mean flow is a good proxy for the IWBC steady state, as revealed by largely parallel isolines of streamfunction and potential vorticity ; a scatter diagram also shows that the IWBC is potentially unstable. Further analysis of the ROMS simulation reveals that remotely generated, westward-propagating nonlinear eddies are the main source of variability in the region. These eddies enter the domain through the Tubarão Bight eastern edge and strongly interact with the IWBC. As they are advected downstream and negotiate the local topography, the eddies grow explosively through horizontal shear production.


Sign in / Sign up

Export Citation Format

Share Document