scholarly journals Turbulence within rain-formed fresh lenses during the SPURS-2 Experiment

Author(s):  
Suneil Iyer ◽  
Kyla Drushka

AbstractObservations of salinity, temperature, and turbulent dissipation rate were made in the top meter of the ocean using the ship-towed Surface Salinity Profiler as part of the second Salinity Processes in the Upper Ocean Regional Study (SPURS-2) to assess the relationships between wind, rain, near-surface stratification, and turbulence. A wide range of wind and rain conditions were observed in the eastern tropical Pacific Ocean near 10°N, 125°W in summer-autumn 2016 and 2017. Wind was the primary driver of near-surface turbulence and the mixing of rain-formed fresh lenses, with lenses generally persisting for hours when wind speeds were under 5 m s−1 and mixing away immediately at higher wind speeds. Rain influenced near-surface turbulence primarily through stratification. Near-surface stratification caused by rainfall or diurnal warming suppressed deeper turbulent dissipation rates when wind speeds were under 3 m s−1. In one case with 4-5 m s−1 winds, rain-induced stratification enhanced dissipation rates within the stratified layer. At wind speeds above 7-8 m s−1, strong stratification was not observed in the upper meter during rain, indicating that rain lenses do not form at wind speeds above 8 m s−1. Raindrop impacts enhanced turbulent dissipation rates at these high wind speeds in the absence of near-surface stratification. Measurements of air-sea buoyancy flux, wind speed, and near-surface turbulence can be used to predict the presence of stratified layers. These findings could be used to improve model parameterizations of air-sea interactions and, ultimately, our understanding of the global water cycle.

2012 ◽  
Vol 25 (3) ◽  
pp. 958-977 ◽  
Author(s):  
Laurent Terray ◽  
Lola Corre ◽  
Sophie Cravatte ◽  
Thierry Delcroix ◽  
Gilles Reverdin ◽  
...  

Abstract Changes in the global water cycle are expected as a result of anthropogenic climate change, but large uncertainties exist in how these changes will be manifest regionally. This is especially the case over the tropical oceans, where observed estimates of precipitation and evaporation disagree considerably. An alternative approach is to examine changes in near-surface salinity. Datasets of observed tropical Pacific and Atlantic near-surface salinity combined with climate model simulations are used to assess the possible causes and significance of salinity changes over the late twentieth century. Two different detection methodologies are then applied to evaluate the extent to which observed large-scale changes in near-surface salinity can be attributed to anthropogenic climate change. Basin-averaged observed changes are shown to enhance salinity geographical contrasts between the two basins: the Pacific is getting fresher and the Atlantic saltier. While the observed Pacific and interbasin-averaged salinity changes exceed the range of internal variability provided from control climate simulations, Atlantic changes are within the model estimates. Spatial patterns of salinity change, including a fresher western Pacific warm pool and a saltier subtropical North Atlantic, are not consistent with internal climate variability. They are similar to anthropogenic response patterns obtained from transient twentieth- and twenty-first-century integrations, therefore suggesting a discernible human influence on the late twentieth-century evolution of the tropical marine water cycle. Changes in the tropical and midlatitudes Atlantic salinity levels are not found to be significant compared to internal variability. Implications of the results for understanding of the recent and future marine tropical water cycle changes are discussed.


2012 ◽  
Vol 1 (33) ◽  
pp. 49 ◽  
Author(s):  
Julia C Mullarney ◽  
Stephen M Henderson

We present high resolution (25 mm spatial, 8 Hz temporal) profiles of velocity measured over a shallow tidal flat using pulse-coherent Acoustic Doppler Profilers mounted on surface drifters. The use of Lagrangian measurements mitigated the problem of resolving velocity ambiguities, a problem which often limits the application of high-resolution pulse-coherent profilers. Turbulent dissipation rates were estimated from second-order structure functions of measured velocity. Drifters were advected towards, and subsequently trapped on, a convergent surface front which marked the edge of a freshwater plume. Measured dissipation rates increased as a drifter deployed within the plume approached the front. A drifter then propagated with and along the front as the fresh plume spread across the tidal flats. Near-surface turbulent dissipation measured at the front roughly matched a theoretical mean-shear-cubed relationship, whereas dissipation measured in the stratified plume behind the front was suppressed. After removal of estimates affected by surface waves, near-bed dissipation matched the velocity cubed relationship, although scatter was substantial. Dissipation rates appeared to be enhanced when the drifter propagated across small subtidal channels.


2019 ◽  
Vol 32 (23) ◽  
pp. 8261-8281 ◽  
Author(s):  
D. Carvalho

Abstract The quality of MERRA-2 surface wind fields was assessed by comparing them with 10 years of measurements from a wide range of surface wind observing platforms. This assessment includes a comparison of MERRA-2 global surface wind fields with the ones from its predecessor, MERRA, to assess if GMAO’s latest reanalyses improved the representation of the global surface winds. At the same time, surface wind fields from other modern reanalyses—NCEP-CFSR, ERA-Interim, and JRA-55—were also included in the comparisons to evaluate MERRA-2 global surface wind fields in the context of its contemporary reanalyses. Results show that MERRA-2, CFSR, ERA-Interim, and JRA-55 show similar error metrics while MERRA consistently shows the highest errors. Thus, when compared with wind observations, the accuracy of MERRA-2 surface wind fields represents a clear improvement over its predecessor MERRA and is in line with the other contemporary reanalyses in terms of the representation of global near-surface wind fields. All reanalyses showed a tendency to underestimate ocean surface winds (particularly in the tropics) and, oppositely, to overestimate inland surface winds (except JRA-55, which showed a global tendency to underestimate the wind speeds); to represent the wind direction rotated clockwise in the Northern Hemisphere (positive bias) and anticlockwise in the Southern Hemisphere (negative bias), with the exception of JRA-55; and to show higher errors near the poles and in the ITCZ, particularly in the equatorial western coasts of Central America and Africa. However, MERRA-2 showed substantially lower wind errors in the poles when compared with the other reanalyses.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 54
Author(s):  
Erik Selander ◽  
Sam T. Fredriksson ◽  
Lars Arneborg

Chemical cues and signals mediate resource acquisition, mate finding, and the assessment of predation risk in marine plankton. Here, we use the chemical properties of the first identified chemical cues from zooplankton together with in situ measurements of turbulent dissipation rates to calculate the effect of turbulence on the distribution of cues behind swimmers as well as steady state background concentrations in surrounding water. We further show that common zooplankton (copepods) appears to optimize mate finding by aggregating at the surface in calm conditions when turbulence do not prevent trail following. This near surface environment is characterized by anisotropic turbulence and we show, using direct numerical simulations, that chemical cues distribute more in the horizontal plane than vertically in these conditions. Zooplankton may consequently benefit from adopting specific search strategies near the surface as well as in strong stratification where similar flow fields develop. Steady state concentrations, where exudation is balanced by degradation develops in a time scale of ~5 h. We conclude that the trails behind millimeter-sized copepods can be detected in naturally occurring turbulence below the wind mixed surface layer or in the absence of strong wind. The trails, however, shorten dramatically at high turbulent dissipation rates, above ~10−3 cm2 s−3 (10−7 W kg−1)


Author(s):  
Suneil Iyer ◽  
Kyla Drushka ◽  
Luc Rainville

AbstractAs part of the second Salinity Processes in the Upper Ocean Regional Study (SPURS-2), the ship-towed Surface Salinity Profiler (SSP) was used to measure near-surface turbulence and stratification on horizontal spatial scales of tens of kilometers over time scales of hours, resolving structures outside the observational capabilities of autonomous or Lagrangian platforms. Observations of microstructure variability of temperature were made at approximately 37 cm depth from the SSP. The platform can be used to measure turbulent kinetic energy dissipation rate when the upper ocean is sufficiently stratified by calculating temperature gradient spectra from the microstructure data and fitting to low wavenumber theoretical Batchelor spectra. Observations of dissipation rate made across a range of wind speeds under 12 m s−1 were consistent with the results of previous studies of near-surface turbulence and with existing turbulence scalings. Microstructure sensors mounted on the SSP can be used to investigate the spatial structure of near-surface turbulence. This provides a new means to study the connections between near-surface turbulence and the larger scale distributions of heat and salt in the near-surface layer of the ocean.


2017 ◽  
Vol 34 (11) ◽  
pp. 2509-2532 ◽  
Author(s):  
Guillaume Novelli ◽  
Cédric M. Guigand ◽  
Charles Cousin ◽  
Edward H. Ryan ◽  
Nathan J. M. Laxague ◽  
...  

AbstractTargeted observations of submesoscale currents are necessary to improve science’s understanding of oceanic mixing, but these dynamics occur at spatiotemporal scales that are currently challenging to detect. Prior studies have recently shown that the submesoscale surface velocity field can be measured by tracking hundreds of surface drifters released in tight arrays. This strategy requires drifter positioning to be accurate, frequent, and to last for several weeks. However, because of the large numbers involved, drifters must be low-cost, compact, easy to handle, and also made of materials harmless to the environment. Therefore, the novel Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) drifter was designed following these criteria to facilitate massive sampling of near-surface currents during the Lagrangian Submesoscale Experiment (LASER). The drifting characteristics were determined under a wide range of currents, waves, and wind conditions in laboratory settings. Results showed that the drifter accurately follows the currents in the upper 0.60 m, that it presents minimal wave rectification issues, and that its wind-induced slip velocity is less than 0.5% of the neutral wind speed at 10 m. In experiments conducted in both coastal and deep ocean conditions under wind speeds up to 10 m s−1, the trajectories of the traditional Coastal Ocean Dynamics Experiment (CODE) and the CARTHE drifters were nearly identical. Following these tests, 1100 units were produced and deployed during the LASER campaign, successfully tracking submesoscale and mesoscale features in the Gulf of Mexico. It is hoped that this drifter will enable high-density sampling near metropolitan areas subject to stress by the overpopulation, such as lakes, rivers, estuaries, and environmentally sensitive areas, such as the Arctic.


2019 ◽  
Author(s):  
Sebastian Landwehr ◽  
Iris Thurnherr ◽  
Nicolas Cassar ◽  
Martin Gysel-Beer ◽  
Julia Schmale

Abstract. At sea, wind forcing is responsible for the formation and development of surface waves and represents an important source of near surface turbulence. Therefore, processes related to near surface turbulence and wave breaking, such as sea spray emission and air-sea gas exchange are often parametrised with wind speed. Shipborne wind speed measurements thus provide highly relevant observations. They can, however, be compromised by flow distortion due to the ship's structure and objects nearby the anemometer that modify the airflow, leading to a deflection of the apparent wind direction and positive or negative acceleration of the apparent wind speed. The resulting errors in the estimated true wind speed can be greatly magnified at low wind speeds. For some research ships, correction factors have been derived from computational fluid dynamic models or through direct comparison with wind speed measurements from buoys. These correction factors can, however, loose their validity due to changes of the structures nearby the anemometer and thus require frequent re-evaluation, which is costly in either computational power or ship time. Here we evaluate if global weather forecast model data can be used to quantify the flow distortion bias in shipborne wind speed measurements. The method is tested on data from the Antarctic Circumnavigation Expedition (ACE) on board the R/V Akademik Tryoshnikov, which are compared with ERA-5 reanalysis wind speeds. We find that, depending on the relative wind direction, the relative wind speed and direction measurements are biased by −37 % to +20 % and −13° to +15°, respectively. The resulting error in the true wind speed is +11 % on average but ranges from −5 % to +40 % (5th and 95th percentile). After applying the bias correction, the uncertainty in the true wind speed is reduced to 5 % and depends mainly on the average accuracy of the ERA-5 data over the period of the experiment. The obvious drawback of this approach is the potential intrusion of model bias in the correction factors. We show that this problem can be somewhat mediated when the error propagation in the true wind correction is accounted for and used to weight the observations. We discuss the potential caveats and limitations of this approach and conclude that it can be used to quantify flow distortion bias for ships that operate on a global scale. The method can also be valuable to verify Computational Fluid Dynamic studies of airflow distortion on research vessels.


2014 ◽  
Vol 44 (6) ◽  
pp. 1595-1604 ◽  
Author(s):  
Benjamin A. Hodges ◽  
David M. Fratantoni

Abstract Autonomous underwater vehicle (AUV) surveys of temperature, salinity, and velocity in the upper 10 m of the ocean were carried out in low-wind conditions near the North Atlantic surface salinity maximum as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) project. Starting from a well-mixed state, the development, deepening, and decay of a warm salty diurnal surface layer was observed at <1-h resolution. The evaporation rate deduced from the freshwater anomaly of the layer corroborates measurements at a nearby flux mooring. Profiles within a few hundred meters of the stationary research vessel showed evidence of mixing, highlighting the effectiveness of AUVs for collecting uncontaminated time series of near-surface thermohaline structure. A two-dimensional horizontal subsurface survey within the diurnal warm layer revealed coherent warm and cool bands, which are interpreted as internal waves on the diurnal thermocline.


2002 ◽  
Author(s):  
David M. Farmer ◽  
Johannes Gemmrich

Sign in / Sign up

Export Citation Format

Share Document