scholarly journals An Assessment of NASA’s GMAO MERRA-2 Reanalysis Surface Winds

2019 ◽  
Vol 32 (23) ◽  
pp. 8261-8281 ◽  
Author(s):  
D. Carvalho

Abstract The quality of MERRA-2 surface wind fields was assessed by comparing them with 10 years of measurements from a wide range of surface wind observing platforms. This assessment includes a comparison of MERRA-2 global surface wind fields with the ones from its predecessor, MERRA, to assess if GMAO’s latest reanalyses improved the representation of the global surface winds. At the same time, surface wind fields from other modern reanalyses—NCEP-CFSR, ERA-Interim, and JRA-55—were also included in the comparisons to evaluate MERRA-2 global surface wind fields in the context of its contemporary reanalyses. Results show that MERRA-2, CFSR, ERA-Interim, and JRA-55 show similar error metrics while MERRA consistently shows the highest errors. Thus, when compared with wind observations, the accuracy of MERRA-2 surface wind fields represents a clear improvement over its predecessor MERRA and is in line with the other contemporary reanalyses in terms of the representation of global near-surface wind fields. All reanalyses showed a tendency to underestimate ocean surface winds (particularly in the tropics) and, oppositely, to overestimate inland surface winds (except JRA-55, which showed a global tendency to underestimate the wind speeds); to represent the wind direction rotated clockwise in the Northern Hemisphere (positive bias) and anticlockwise in the Southern Hemisphere (negative bias), with the exception of JRA-55; and to show higher errors near the poles and in the ITCZ, particularly in the equatorial western coasts of Central America and Africa. However, MERRA-2 showed substantially lower wind errors in the poles when compared with the other reanalyses.

2015 ◽  
Vol 12 (1) ◽  
pp. 187-198 ◽  
Author(s):  
A. K. Kaiser-Weiss ◽  
F. Kaspar ◽  
V. Heene ◽  
M. Borsche ◽  
D. G. H. Tan ◽  
...  

Abstract. Reanalysis near-surface wind fields from multiple reanalyses are potentially an important information source for wind energy applications. Inter-comparing reanalyses via employing independent observations can help to guide users to useful spatio-temporal scales. Here we compare the statistical properties of wind speeds observed at 210 traditional meteorological stations over Germany with the reanalyses' near-surface fields, confining the analysis to the recent years (2007 to 2010). In this period, the station time series in Germany can be expected to be mostly homogeneous. We compare with a regional reanalysis (COSMO-REA6) and two global reanalyses, ERA-Interim and ERA-20C. We show that for the majority of the stations, the Weibull parameters of the daily mean wind speed frequency distribution match remarkably well with the ones derived from the reanalysis fields. High correlations (larger than 0.9) can be found between stations and reanalysis monthly mean wind speeds all over Germany. Generally, the correlation between the higher resolved COSMO-REA6 wind fields and station observations is highest, for both assimilated and non-assimilated (i.e., independent) observations. As expected from the lower spatial resolution and reduced amount of data assimilated into ERA-20C, the correlation of monthly means decreases somewhat relative to the other reanalyses (in our investigated period of 2007 to 2010). Still, the inter-annual variability connected to the North Atlantic Oscillation (NAO) found in the reanalysis surface wind anomalies is in accordance with the anomalies recorded by the stations. We discuss some typical examples where differences are found, e.g., where the mean wind distributions differ (probably related to either height or model topography differences) and where the correlations break down (because of unresolved local topography) which applies to a minority of stations. We also identified stations with homogeneity problems in the reported station values, demonstrating how reanalyses can be applied to support quality control for the observed station data. Finally, as a demonstration of concept, we discuss how comparing feedback files of the different reanalyses can guide users to useful scales of variability.


2015 ◽  
Vol 15 (7) ◽  
pp. 3785-3801 ◽  
Author(s):  
B. W. Butler ◽  
N. S. Wagenbrenner ◽  
J. M. Forthofer ◽  
B. K. Lamb ◽  
K. S. Shannon ◽  
...  

Abstract. A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., ~ 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The wind data are presented in terms of four flow regimes: upslope, afternoon, downslope, and a synoptically driven regime. There were notable differences in the data collected from the two terrain types. For example, wind speeds on the isolated mountain increased with distance upslope during upslope flow, but generally decreased with distance upslope at the river canyon site during upslope flow. In a downslope flow, wind speed did not have a consistent trend with position on the isolated mountain, but generally increased with distance upslope at the river canyon site. The highest measured speeds occurred during the passage of frontal systems on the isolated mountain. Mountaintop winds were often twice as high as wind speeds measured on the surrounding plain. The highest speeds measured in the river canyon occurred during late morning hours and were from easterly down-canyon flows, presumably associated with surface pressure gradients induced by formation of a regional thermal trough to the west and high pressure to the east. Under periods of weak synoptic forcing, surface winds tended to be decoupled from large-scale flows, and under periods of strong synoptic forcing, variability in surface winds was sufficiently large due to terrain-induced mechanical effects (speed-up over ridges and decreased speeds on leeward sides of terrain obstacles) that a large-scale mean flow would not be representative of surface winds at most locations on or within the terrain feature. These findings suggest that traditional operational weather model (i.e., with numerical grid resolutions of around 4 km or larger) wind predictions are not likely to be good predictors of local near-surface winds on sub-grid scales in complex terrain. Measurement data can be found at http://www.firemodels.org/index.php/windninja-introduction/windninja-publications.


2014 ◽  
Vol 14 (11) ◽  
pp. 16821-16863
Author(s):  
B. W. Butler ◽  
N. S. Wagenbrenner ◽  
J. M. Forthofer ◽  
B. K. Lamb ◽  
K. S. Shannon ◽  
...  

Abstract. A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., ∼100 m); however, there are very limited observational data available for evaluating these high resolution models. This study presents high-resolution surface wind datasets collected from an isolated mountain and a steep river canyon. The wind data are presented in terms of four flow regimes: upslope, afternoon, downslope, and a synoptically-driven regime. There were notable differences in the data collected from the two terrain types. For example, wind speeds collected on the isolated mountain increased with distance upslope during upslope flow, but generally decreased with distance upslope at the river canyon site during upslope flow. Wind speed did not have a simple, consistent trend with position on the slope during the downslope regime on the isolated mountain, but generally increased with distance upslope at the river canyon site. The highest measured speeds occurred during the passage of frontal systems on the isolated mountain. Mountaintop winds were often twice as high as wind speeds measured on the surrounding plain. The highest speeds measured in the river canyon occurred during late morning hours and were from easterly downcanyon flows, presumably associated with surface pressure gradients induced by formation of a regional thermal trough to the west and high pressure to the east. Under periods of weak synoptic forcing, surface winds tended to be decoupled from large-scale flows, and under periods of strong synoptic forcing, variability in surface winds was sufficiently large due to terrain-induced mechanical effects (speed-up over ridges and decreased speeds on leeward sides of terrain obstacles) that a large-scale mean flow would not be representative of surface winds at most locations on or within the terrain feature. These findings suggest that traditional operational weather model (i.e., with numerical grid resolutions of around 4 km or larger) wind predictions are not likely to be good predictors of local near-surface winds at sub-grid scales in complex terrain. The data from this effort are archived and available at: http://www.firemodels.org/index.php/windninja-introduction/windninja-publications.


2021 ◽  
Author(s):  
Xia Li ◽  
Yongjie Pan ◽  
Yingsha Jiang

Abstract Near-surface wind speed is of great significance in many aspects of the human production and living. This study analyses the spatiotemporal characteristics of the near-surface wind speed and wind speed percentiles with meteorological station observations in China from 1979 to 2019. Furthermore, the mechanisms of the wind speed variations are also investigated with ERA-Interim reanalysis dataset. Spatially, the wind speeds in the northern and eastern regions of China are larger than that in the central and southern regions. Seasonally, the wind speed in spring is significantly larger than that in the other seasons. The dispersion degree of wind speed in spring is larger than that in the other seasons both spatially and temporally. The near-surface wind speed in China shows significantly decreasing trends during 1979–2019, particularly in 1979–1999, but the wind speed trend reversed after 2000. After dividing the wind speed into different percentiles, it recognizes that the decreasing trend of stronger winds are more significant than that of weaker winds. The weaker the wind speed, the more significant increasing trend after 2000. Therefore, the decreasing wind speed trend before 2000 is mainly caused by the significant reduction of strong wind, while the reversal trend after 2000 results from the increase of weak wind. The variations of the wind speed over China attributed to both the U and V wind components, and the variations of zonal wind is closely related to the weakened upper westerly wind field and the uneven warming between high and low latitudes.


2010 ◽  
Vol 23 (19) ◽  
pp. 5151-5162 ◽  
Author(s):  
Adam Hugh Monahan

Abstract Air–sea exchanges of momentum, energy, and material substances of fundamental importance to the variability of the climate system are mediated by the character of the turbulence in the atmospheric and oceanic boundary layers. Sea surface winds influence, and are influenced by, these fluxes. The probability density function (pdf) of sea surface wind speeds p(w) is a mathematical object describing the variability of surface winds that arises from the physics of the turbulent atmospheric planetary boundary layer. Previous mechanistic models of the pdf of sea surface wind speeds have considered the momentum budget of an atmospheric layer of fixed thickness and neutral stratification. The present study extends this analysis, using an idealized model to consider the influence of boundary layer thickness variations and nonneutral surface stratification on p(w). It is found that surface stratification has little direct influence on p(w), while variations in boundary layer thickness bring the predictions of the model into closer agreement with the observations. Boundary layer thickness variability influences the shape of p(w) in two ways: through episodic downward mixing of momentum into the boundary layer from the free atmosphere and through modulation of the importance (relative to other tendencies) of turbulent momentum fluxes at the surface and the boundary layer top. It is shown that the second of these influences dominates over the first.


2021 ◽  
Author(s):  
Terhi K. Laurila ◽  
Victoria A. Sinclair ◽  
Hilppa Gregow

<p>The knowledge of long-term climate and variability of near-surface wind speeds is essential and widely used among meteorologists, climate scientists and in industries such as wind energy and forestry. The new high-resolution ERA5 reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) will likely be used as a reference in future climate projections and in many wind-related applications. Hence, it is important to know what is the mean climate and variability of wind speeds in ERA5.</p><p>We present the monthly 10-m wind speed climate and decadal variability in the North Atlantic and Europe during the 40-year period (1979-2018) based on ERA5. In addition, we examine temporal time series and possible trends in three locations: the central North Atlantic, Finland and Iberian Peninsula. Moreover, we investigate what are the physical reasons for the decadal changes in 10-m wind speeds.</p><p>The 40-year mean and the 98th percentile wind speeds show a distinct contrast between land and sea with the strongest winds over the ocean and a seasonal variation with the strongest winds during winter time. The winds have the highest values and variabilities associated with storm tracks and local wind phenomena such as the mistral. To investigate the extremeness of the winds, we defined an extreme find factor (EWF) which is the ratio between the 98th percentile and mean wind speeds. The EWF is higher in southern Europe than in northern Europe during all months. Mostly no statistically significant linear trends of 10-m wind speeds were found in the 40-year period in the three locations and the annual and decadal variability was large.</p><p>The windiest decade in northern Europe was the 1990s and in southern Europe the 1980s and 2010s. The decadal changes in 10-m wind speeds were largely explained by the position of the jet stream and storm tracks and the strength of the north-south pressure gradient over the North Atlantic. In addition, we investigated the correlation between the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO) in the three locations. The NAO has a positive correlation in the central North Atlantic and Finland and a negative correlation in Iberian Peninsula. The AMO correlates moderately with the winds in the central North Atlantic but no correlation was found in Finland or the Iberian Peninsula. Overall, our study highlights that rather than just using long-term linear trends in wind speeds it is more informative to consider inter-annual or decadal variability.</p>


2014 ◽  
Vol 27 (11) ◽  
pp. 4226-4244 ◽  
Author(s):  
Robert Fajber ◽  
Adam H. Monahan ◽  
William J. Merryfield

Abstract The timing of daily extreme wind speeds from 10 to 200 m is considered using 11 yr of 10-min averaged data from the 213-m tower at Cabauw, the Netherlands. This analysis is complicated by the tendency of autocorrelated time series to take their extreme values near the beginning or end of a fixed window in time, even when the series is stationary. It is demonstrated that a simple averaging procedure using different base times to define the day effectively suppresses this “edge effect” and enhances the intrinsic nonstationarity associated with diurnal variations in boundary layer processes. It is found that daily extreme wind speeds at 10 m are most likely in the early afternoon, whereas those at 200 m are most likely in between midnight and sunrise. An analysis of the joint distribution of the timing of extremes at these two altitudes indicates the presence of two regimes: one in which the timing is synchronized between these two layers, and the other in which the occurrence of extremes is asynchronous. These results are interpreted physically using an idealized mechanistic model of the surface layer momentum budget.


2019 ◽  
Vol 33 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Yajun Xiong ◽  
Xiaoge Xin ◽  
Xingxia Kou

2016 ◽  
Vol 55 (5) ◽  
pp. 1107-1121 ◽  
Author(s):  
Y. C. He ◽  
P. W. Chan ◽  
Q. S. Li

AbstractWind measurement offers an essential data source for a wide range of practices in the fields of meteorology and wind engineering. However, records of surface winds are usually influenced by terrain/topographic effects, and direct usage of raw data may bring in nonignorable errors for follow-up applications. A data-driven standardization scheme was recently proposed by the authors to convert the surface wind measurements over rugged terrain into their potential values corresponding to reference conditions, that is, for neutral winds at a height of 10 m above open flat terrain (z0 = 0.03 m). As a complementary part of the preceding work, this study focuses on the standardization of surface wind speeds with marine exposures. The effect of wind strength on the roughness of the sea surface is further taken into account, with emphasis on the difference between deep-ocean and shallow-water cases. As an application example, wind measurements at a buoy site near the coastal line (water depth is 14 m) are adjusted to their potential values, which are then compared with those at a nearby station. The good agreement between the two sets of results demonstrates the accuracy and effectiveness of the standardization method. It is also found that the behavior of roughness length scale over shallow water may differ noticeably from that over deep ocean, especially under strong wind conditions, and an inappropriate usage of marine roughness predictors may result in significant estimation errors.


2018 ◽  
Vol 27 (4) ◽  
pp. 257 ◽  
Author(s):  
O. Rios ◽  
W. Jahn ◽  
E. Pastor ◽  
M. M. Valero ◽  
E. Planas

Local wind fields that account for topographic interaction are a key element for any wildfire spread simulator. Currently available tools to generate near-surface winds with acceptable accuracy do not meet the tight time constraints required for data-driven applications. This article presents the specific problem of data-driven wildfire spread simulation (with a strategy based on using observed data to improve results), for which wind diagnostic models must be run iteratively during an optimisation loop. An interpolation framework is proposed as a feasible alternative to keep a positive lead time while minimising the loss of accuracy. The proposed methodology was compared with the WindNinja solver in eight different topographic scenarios with multiple resolutions and reference – pre-run– wind map sets. Results showed a major reduction in computation time (~100 times once the reference fields are available) with average deviations of 3% in wind speed and 3° in direction. This indicates that high-resolution wind fields can be interpolated from a finite set of base maps previously computed. Finally, wildfire spread simulations using original and interpolated maps were compared showing minimal deviations in the fire shape evolution. This methodology may have an important effect on data assimilation frameworks and probabilistic risk assessment where high-resolution wind fields must be computed for multiple weather scenarios.


Sign in / Sign up

Export Citation Format

Share Document