The Effects of Wind Forcing and Background Mean Currents on the Latitudinal Structure of Equatorial Rossby Waves

2005 ◽  
Vol 35 (5) ◽  
pp. 666-682 ◽  
Author(s):  
Renellys C. Perez ◽  
Dudley B. Chelton ◽  
Robert N. Miller

Abstract The latitudinal structure of annual equatorial Rossby waves in the tropical Pacific Ocean based on sea surface height (SSH) and thermocline depth observations is equatorially asymmetric, which differs from the structure of the linear waves of classical theory that are often presumed to dominate the variability. The nature of this asymmetry is such that the northern SSH maximum (along 5.5°N) is roughly 2 times that of the southern maximum (along 6.5°S). In addition, the observed westward phase speeds are roughly 0.5 times the predicted speed of 90 cm s−1 and are also asymmetric with the northern phase speeds, about 25% faster than the southern phase speeds. One hypothesized mechanism for the observed annual equatorial Rossby wave amplitude asymmetry is modification of the meridional structure by the asymmetric meridional shears associated with the equatorial current system. Another hypothesis is the asymmetry of the annually varying wind forcing, which is stronger north of the equator. A reduced-gravity, nonlinear, β-plane model with rectangular basin geometry forced by idealized Quick Scatterometer (QuikSCAT) wind stress is used to test these two mechanisms. The model with an asymmetric background mean current system perturbed with symmetric annually varying winds consistently produces asymmetric Rossby waves with a northern maximum (4.7°N) that is 1.6 times the southern maximum (5.2°S) and westward phase speeds of approximately 53 ± 13 cm s−1 along both latitudes. Simulations with a symmetric background mean current system perturbed by asymmetric annually varying winds fail to produce the observed Rossby wave structure unless the perturbation winds become strong enough for nonlinear interactions to produce asymmetry in the background mean current system. The observed latitudinal asymmetry of the phase speed is found to be critically dependent on the inclusion of realistic coastline boundaries.

2011 ◽  
Vol 41 (6) ◽  
pp. 1077-1101 ◽  
Author(s):  
Theodore S. Durland ◽  
Roger M. Samelson ◽  
Dudley B. Chelton ◽  
Roland A. de Szoeke

Abstract Previously unaddressed aspects of how equatorial currents affect long Rossby wave phase speeds are investigated using solutions of the shallow-water equations linearized about quasi-realistic currents. Modification of the background potential vorticity (PV) gradient by curvature in the narrow equatorial currents is shown to play a role comparable to the Doppler shift emphasized by previous authors. The important variables are the meridional projections of mean-current features onto relevant aspects of the wave field. As previously shown, Doppler shifting of long Rossby waves is determined by the projection of the mean currents onto the wave’s squared zonal-velocity and pressure fields. PV-gradient modification matters only to the extent that it projects onto the wave field’s squared meridional velocity. Because the zeros of an equatorial wave’s meridional velocity are staggered relative to those of the zonal velocity and pressure, and because the meridional scales of the equatorial currents are similar to those of the low-mode Rossby waves, different parts of the current system dominate the advective and PV-gradient modification effects on a single mode. Since the equatorial symmetry of classical equatorial waves alternates between symmetric and antisymmetric with increasing meridional mode number, the currents produce opposite effects on adjacent modes. Meridional mode 1 is slowed primarily by a combination of eastward advection by the Equatorial Undercurrent (EUC) and the PV-gradient decrease at the peaks of the South Equatorial Current (SEC). The mode-2 phase speed, in contrast, is increased primarily by a combination of westward advection by the SEC and the PV-gradient increase at the core of the EUC. Perturbation solutions are carried to second order in ε, the Rossby number of the mean current, and it is shown that this is necessary to capture the full effect of quasi-realistic current systems, which are asymmetric about the equator. Equatorially symmetric components of the current system affect the phase speed at O(ε), but antisymmetric components of the currents and distortions of the wave structures by the currents do not influence the phase speed until O(ε2).


2020 ◽  
Vol 50 (4) ◽  
pp. 921-933 ◽  
Author(s):  
Zhixiang Zhang ◽  
Larry J. Pratt ◽  
Fan Wang ◽  
Jianing Wang ◽  
Shuwen Tan

AbstractIntermediate-depth intraseasonal variability (ISV) at a 20–90-day period, as detected in velocity measurements from seven subsurface moorings in the tropical western Pacific, is interpreted in terms of equatorial Rossby waves. The moorings were deployed between 0° and 7.5°N along 142°E from September 2014 to October 2015. The strongest ISV energy at 1200 m occurs at 4.5°N. Peak energy at 4.5°N is also seen in an eddy-resolving global circulation model. An analysis of the model output identifies the source of the ISV as short equatorial Rossby waves with westward phase speed but southeastward and downward group velocity. Additionally, it is shown that a superposition of first three baroclinic modes is required to represent the ISV energy propagation. Further analysis using a 1.5-layer shallow water model suggests that the first meridional mode Rossby wave accounts for the specific meridional distribution of ISV in the western Pacific. The same model suggests that the tilted coastlines of Irian Jaya and Papua New Guinea, which lie to the south of the moorings, shift the location of the northern peak of meridional velocity oscillation from 3°N to near 4.5°N. The tilt of this boundary with respect to a purely zonal alignment therefore needs to be taken into account to explain this meridional shift of the peak. Calculation of the barotropic conversion rate indicates that the intraseasonal kinetic energy below 1000 m can be transferred into the mean flows, suggesting a possible forcing mechanism for intermediate-depth zonal jets.


2009 ◽  
Vol 22 (22) ◽  
pp. 5839-5853 ◽  
Author(s):  
Shayne McGregor ◽  
Alex Sen Gupta ◽  
Neil J. Holbrook ◽  
Scott B. Power

Abstract Evidence suggests that the magnitude and frequency of the El Niño–Southern Oscillation (ENSO) changes on interdecadal time scales. This is manifest in a distinct shift in ENSO behavior during the late 1970s. This study investigates mechanisms that may force this interdecadal variability and, in particular, on modulations driven by extratropical Rossby waves. Results from oceanic shallow-water models show that the Rossby wave theory can explain small near-zonal changes in equatorial thermocline depth that can alter the amplitude of simulated ENSO events. However, questions remain over whether the same mechanism operates in more complex coupled general circulation models (CGCMs) and what the magnitude of the resulting change would be. Experiments carried out in a state-of-the-art z-coordinate primitive equation model confirm that the Rossby wave mechanism does indeed operate. The effects of these interactions are further investigated using a partial coupling (PC) technique. This allows for the isolation of the role of wind stress–forced oceanic exchanges between the extratropics and the tropics and the subsequent modulation of ENSO variability. It is found that changes in the background state of the equatorial Pacific thermocline depth, induced by a fixed off-equatorial wind stress anomaly, can significantly affect the probability of ENSO events occurring. This confirms the results obtained from simpler models and further validates theories that rely on oceanic wave dynamics to generate Pacific Ocean interdecadal variability. This indicates that an improved predictive capability for seasonal-to-interannual ENSO variability could be achieved through a better understanding of extratropical-to-tropical Pacific Ocean transfers and western boundary processes. Furthermore, such an understanding would provide a physical basis to enhance multiyear probabilistic predictions of ENSO indices.


2021 ◽  
Vol 893 (1) ◽  
pp. 012015
Author(s):  
P Wu ◽  
Y Fukutomi ◽  
K Kikuchi

Abstract This study examined the cause of a record torrential rain event over the western coast of Sumatra Island in March 2016. The influence of atmospheric equatorial waves (EWs) and the characteristics of the EWs were investigated. Analysis of the Japanese 55-year Reanalysis data (JRA-55) and precipitation data from the Global Precipitation Measurement (GPM) satellite showed that the event was caused by the combined effects of Kelvin waves, equatorial Rossby waves, and westward inertio-gravity (WIG) waves. An examination of the characteristics of the EWs revealed that the Kelvin waves had longitudinal scales of ~6,000 km, with a period of ~6 days and phase speed of ~12 m s-1, which was typical of the convectively coupled Kelvin waves in this region. The WIG waves had a scale of ~2,500 km, with a period of 2.5 days and a relatively fast phase speed of 12~13 m s-1. Heavy precipitation occurred when an eastward Kelvin wave from the Indian Ocean encountered a westward inertio-gravity (WIG) over Sumatra Island. It was concluded that along with the Kelvin and equatorial Rossby waves, the WIG waves might have played a major role in the formation of the extreme precipitation event.


2012 ◽  
Vol 25 (8) ◽  
pp. 2824-2842 ◽  
Author(s):  
Benjamin G. M. Webber ◽  
David P. Stevens ◽  
Adrian J. Matthews ◽  
Karen J. Heywood

Abstract The authors show that a simple three-dimensional ocean model linearized about a resting basic state can accurately simulate the dynamical ocean response to wind forcing by the Madden–Julian oscillation (MJO). This includes the propagation of equatorial waves in the Indian Ocean, from the generation of oceanic equatorial Kelvin waves to the arrival of downwelling oceanic equatorial Rossby waves in the western Indian Ocean, where they have been shown to trigger MJO convective activity. Simulations with idealized wind forcing suggest that the latitudinal width of this forcing plays a crucial role in determining the potential for such feedbacks. Forcing the model with composite MJO winds accurately captures the global ocean response, demonstrating that the observed ocean dynamical response to the MJO can be interpreted as a linear response to surface wind forcing. The model is then applied to study “primary” Madden–Julian events, which are not immediately preceded by any MJO activity or by any apparent atmospheric triggers, but have been shown to coincide with the arrival of downwelling oceanic equatorial Rossby waves. Case study simulations show how this oceanic equatorial Rossby wave activity is partly forced by reflection of an oceanic equatorial Kelvin wave triggered by a westerly wind burst 140 days previously, and partly directly forced by easterly wind stress anomalies around 40 days prior to the event. This suggests predictability for primary Madden–Julian events on times scales of up to five months, following the reemergence of oceanic anomalies forced by winds almost half a year earlier.


2020 ◽  
Author(s):  
Jacopo Riboldi ◽  
François Lott ◽  
Fabio D'Andrea ◽  
Gwendal RIvière

<p>Rossby wave activity is intimately related to the day-to-day weather evolution over midlatitudes and to the occurrence of extreme events. Global warming trends may also affect their characteristics: for example, it has been hypothesized that Arctic warming with respect to midlatitudes, known as Arctic Amplification, may lead to a reduction in the speed of Rossby waves, to more frequent atmospheric blocking and to extreme temperature events over midlatitudes. Testing this hypothesis requires an estimate of the evolution and of the variability of phase speed in recent decades and in climate model simulations. However, measuring the phase speed of the global Rossby wave pattern is a complex task, as the midlatitude flow consists of a superposition of waves of different nature (e.g., planetary vs synoptic) across a broad range of wavenumbers and frequencies.</p><p>We propose here a framework, based on spectral analysis, to understand the variability of Rossby wave characteristics in reanalysis and their possible future changes. A novel, daily climatology of wave spectra based on gridded upper-level wind data is employed to study the evolution of Rossby wave phase speed over the Northern Hemisphere between March 1979 and November 2018. A global estimate of phase speed is obtained by doing a weighted average of the phase speed of each wave, with the associated spectral coefficients as weights.</p><p>Several insights about the drivers of phase speed variability at different time scales and their link with extreme temperature events can be gained from this diagnostic. 1) The occurrence of low phase speeds over Northern Hemisphere midlatitudes is related to a poleward displacement of blocking frequency maxima; conversely, the occurrence of high phase speed is related to blocking occurring at lower latitudes than usual. 2) Periods of low phase speed are associated with the occurrence of anomalous temperatures over Northern Hemisphere midlatitudes in winter, while this linkage is weaker during boreal summer. 3) No significant trend in phase speed has been observed during recent decades, despite the presence of Arctic Amplification. The absence of trend in phase speed is consistent with the evolution of the meridional geopotential gradient during recent decades. On the other hand, the high temporal resolution of the phase speed metric highlights the intraseasonal and interannual variability of Rossby wave propagation and points to 2009/10 as an extreme winter characterized by particularly low phase speed.</p>


2006 ◽  
Vol 36 (5) ◽  
pp. 930-944 ◽  
Author(s):  
Dongliang Yuan ◽  
Weiqing Han

Abstract An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.


2003 ◽  
Vol 33 (8) ◽  
pp. 1549-1563 ◽  
Author(s):  
Antonietta Capotondi ◽  
Michael A. Alexander ◽  
Clara Deser

Abstract Observations indicate the existence of two bands of maximum thermocline depth variability centered at ∼10°S and 13°N in the tropical Pacific Ocean. The analysis of a numerical integration performed with the National Center for Atmospheric Research ocean general circulation model (OGCM) forced with observed fluxes of momentum, heat, and freshwater over the period from 1958 to 1997 reveals that the tropical centers of thermocline variability at 10°S and 13°N are associated with first-mode baroclinic Rossby waves forced by anomalous Ekman pumping. In this study the factors that may be responsible for the Rossby wave maxima at 10°S and 13°N, including the amplitude and spatial coherency of the forcing at those latitudes, are systematically investigated. A simple Rossby wave model is used to interpret the OGCM variability and to help to discriminate between the different factors that may produce the tropical maxima. These results indicate that the dominant factor in producing the maximum variability at 10°S and 13°N is the zonal coherency of the Ekman pumping, a characteristic of the forcing that becomes increasingly more pronounced at low frequencies, maximizing at timescales in the decadal range. Local maxima in the amplitude of the forcing, while not explaining the origin of the centers of variability at 10°S and 13°N, appear to affect the sharpness of the variability maxima at low frequencies. Although the Rossby wave model gives an excellent fit to the OGCM, some discrepancies exist: the amplitude of the thermocline variance is generally underestimated by the simple model, and the variability along 13°N is westward intensified in the wave model but reaches a maximum in the central part of the basin in the OGCM. Short Rossby waves excited by small-scale Ekman pumping features, or the presence of higher-order Rossby wave modes may be responsible for the differences in the zonal variance distribution along 13°N.


2021 ◽  
Author(s):  
Jacopo Riboldi ◽  
Efi Rousi ◽  
Fabio D'Andrea ◽  
Gwendal Rivière ◽  
François Lott

Abstract. The classic partitioning between slow-moving, low-wavenumber planetary waves and fast-moving, high-wavenumber synoptic waves is systematically extended by means of a wavenumber/phase speed spectral decomposition to characterize the day-to-day evolution of Rossby wave activity in the upper troposphere. This technique is employed to study the origin and the propagation of circumglobal Rossby wave patterns (CRWPs), amplified Rossby waves stretching across the Northern Hemisphere in the zonal direction and characterized by few, dominant wavenumbers. Principal component analysis of daily anomalies in spectral power allows for two CRWPs to emerge as dominant variability modes in the spectral domain during boreal winter. These modes correspond to the baroclinic propagation of amplified Rossby waves from the Pacific to the Atlantic storm track in a hemispheric flow configuration displaying enhanced meridional gradients of geopotential height over midlatitudes. The first CRWP is forced by tropical convection anomalies over the Indian Ocean and features the propagation of amplified Rossby wave packets over northern midlatitudes, while the second one propagates rapidly over latitudes between 35° N and 55° N and appears to have extratropical origin. Propagation of Rossby waves from the Atlantic eddy-driven jet to the African subtropical jet occurs for both CRWPs following anticyclonic wave breaking.


2020 ◽  
Author(s):  
Matthew Patterson ◽  
Tim Woollings ◽  
Tom Bracegirdle

<p>Eddy-driven jets are sustained through momentum transport by Rossby waves, which propagate along potential vorticity (PV) gradients. In the atmosphere, spatial variations in time-mean PV are mostly dominated by the variation of the Coriolis parameter with latitude. However, at high southern latitudes, a significant perturbation to the distribution and mixing of PV is provided by the Antarctic Plateau, which rises up to 4km above sea level. It is therefore possible that this orography affects Rossby wave propagation and hence affects the circulation in mid-latitudes.</p><p>We show through a set of semi-realistic and idealised experiments, that Antarctic topography plays a fundamental role in shaping the structure of the Southern Hemisphere extratropics. In particular, we perform runs with and without the Antarctic Plateau and demonstrate that the Plateau alters Rossby wave structure and propagation, thereby changing the momentum fluxes. Removal of the Plateau weakens the Indian Ocean jet and has a substantial effect on the flow downstream over the South Pacific. Here, the characteristic split jet pattern is destroyed and the flow at high latitudes stagnates. This also illustrates the prevalence of downstream development in the Southern Hemisphere and the strong connections between the flow over the South Pacific and Indian Oceans.   </p>


Sign in / Sign up

Export Citation Format

Share Document