scholarly journals The Modulation of ENSO Variability in CCSM3 by Extratropical Rossby Waves

2009 ◽  
Vol 22 (22) ◽  
pp. 5839-5853 ◽  
Author(s):  
Shayne McGregor ◽  
Alex Sen Gupta ◽  
Neil J. Holbrook ◽  
Scott B. Power

Abstract Evidence suggests that the magnitude and frequency of the El Niño–Southern Oscillation (ENSO) changes on interdecadal time scales. This is manifest in a distinct shift in ENSO behavior during the late 1970s. This study investigates mechanisms that may force this interdecadal variability and, in particular, on modulations driven by extratropical Rossby waves. Results from oceanic shallow-water models show that the Rossby wave theory can explain small near-zonal changes in equatorial thermocline depth that can alter the amplitude of simulated ENSO events. However, questions remain over whether the same mechanism operates in more complex coupled general circulation models (CGCMs) and what the magnitude of the resulting change would be. Experiments carried out in a state-of-the-art z-coordinate primitive equation model confirm that the Rossby wave mechanism does indeed operate. The effects of these interactions are further investigated using a partial coupling (PC) technique. This allows for the isolation of the role of wind stress–forced oceanic exchanges between the extratropics and the tropics and the subsequent modulation of ENSO variability. It is found that changes in the background state of the equatorial Pacific thermocline depth, induced by a fixed off-equatorial wind stress anomaly, can significantly affect the probability of ENSO events occurring. This confirms the results obtained from simpler models and further validates theories that rely on oceanic wave dynamics to generate Pacific Ocean interdecadal variability. This indicates that an improved predictive capability for seasonal-to-interannual ENSO variability could be achieved through a better understanding of extratropical-to-tropical Pacific Ocean transfers and western boundary processes. Furthermore, such an understanding would provide a physical basis to enhance multiyear probabilistic predictions of ENSO indices.

2007 ◽  
Vol 20 (11) ◽  
pp. 2643-2658 ◽  
Author(s):  
Shayne McGregor ◽  
Neil J. Holbrook ◽  
Scott B. Power

Abstract The Australian Bureau of Meteorology Research Centre CGCM and a linear first baroclinic-mode ocean shallow-water model (SWM) are used to investigate ocean dynamic forcing mechanisms of the equatorial Pacific Ocean interdecadal sea surface temperature (SST) variability. An EOF analysis of the 13-yr low-pass Butterworth-filtered SST anomalies from a century-time-scale CGCM simulation reveals an SST anomaly spatial pattern and time variability consistent with the interdecadal Pacific oscillation. Results from an SWM simulation forced with wind stresses from the CGCM simulation are shown to compare well with the CGCM, and as such the SWM is then used to investigate the roles of “uncoupled” equatorial wind stress forcing, off-equatorial wind stress forcing (OffEqWF), and Rossby wave reflection at the western Pacific Ocean boundary, on the decadal equatorial thermocline depth anomalies. Equatorial Pacific wind stresses are shown to explain a large proportion of the overall variance in the equatorial thermocline depth anomalies. However, OffEqWF beyond 12.5° latitude produces an interdecadal signature in the Niño-4 (Niño-3) region that explains approximately 10% (1.5%) of the filtered control simulation variance. Rossby wave reflection at the western Pacific boundary is shown to underpin the OffEqWF contribution to these equatorial anomalies. The implications of this result for the predictability of the decadal variations of thermocline depth are investigated with results showing that OffEqWF generates an equatorial response in the Niño-3 region up to 3 yr after the wind stress forcing is switched off. Further, a statistically significant correlation is found between thermocline depth anomalies in the off-equatorial zone and the Niño-3 region, with the Niño-3 region lagging by approximately 2 yr. The authors conclude that there is potential predictability of the OffEqWF equatorial thermocline depth anomalies with lead times of up to 3 yr when taking into account the amplitudes and locations of off-equatorial region Rossby waves.


2019 ◽  
Vol 16 (33) ◽  
pp. 630-640
Author(s):  
C. M. DÍEZ ◽  
C. J. SOLANO

The atmosphere system is ruled by the interaction of many meteorological parameters, causing a dependency between them, i.e., moisture and temperature, both suitable in front of any anomaly, such as storms, hurricanes, El Niño-Southern Oscillation (ENSO) events. So, understanding perturbations of the variation of moistness along the time may provide an indicator of any oceanographic phenomenon. Annual relative humidity data around the Equatorial line of the Pacific Ocean were processed and analyzed to comprehend the time evolution of each dataset, appreciate anomalies, trends, histograms, and propose a way to predict anomalous episodes such ENSO events, observing abnormality of lag correlation coefficients between every pair of buoys. Datasets were taken from the Tropical Atmosphere Ocean / Triangle Trans-Ocean Network (TAO/TRITON) project, array directed by Pacific Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA), and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). All the datasets were processed, and the code was elaborated by the author or adapted from Mathworks Inc. Even occurrences of relative humidity in the east side of the Pacific Ocean seem to oscillate harmonically, while occurrences in the west side, do not, because of the size of their amplitudes of oscillations. This fact can be seen in the histograms that show Peak shapes in the east side of the ocean, and Gaussians in the west; lag correlation functions show that no one pair of buoys synchronize fluctuations, but western buoys are affected in front of ENSO events, especially between 1997-98. Definitely, lag correlations in western buoys are determined to detect ENSO events.


2020 ◽  
Author(s):  
Jian Rao ◽  
Chaim Garfinkel ◽  
Ian White ◽  
Chen Schwartz

<p>Using 17 CMIP5/6 models with a spontaneously-generated quasi-biennial oscillation (QBO)-like phenomenon, this study explores and evaluates three dynamical pathways for impacts of the QBO on the troposphere: (i) the Holtan-Tan (HT) effect on the stratospheric polar vortex and the northern annular mode (NAM), (ii) the subtropical zonal wind downward arching over the Pacific, and (iii) changes in local convection over the Maritime Continent and Indo-Pacific Ocean. More than half of the models can reproduce at least one of the three pathways, but few models can reproduce all of the three routes. Firstly, most models are able to simulate a weakened polar vortex during easterly QBO (EQBO) winters, in agreement with the observed HT effect. However, the weakened polar vortex response during EQBO winters is underestimated or not present at all in other models, and hence the QBO → vortex → tropospheric NAM/AO chain is not simulated. For the second pathway associated with the downward arching of the QBO winds, seven models incorrectly or poorly simulate the extratropical easterly anomaly center over 20–40°N in the Pacific sector during EQBO, and hence the negative relative vorticity anomalies poleward of the easterly center is not resolved in those models, leading to an underestimated or incorrectly modelled height response over North Pacific. However the other ten do capture this effect. The third pathway is only observed in the Indo-Pacific Ocean, where the strong climatological deep convection and the warm pool are situated. Nine models can simulate the convection anomalies associated with the QBO over the Maritime Continent, which is likely caused by the near-tropopause low buoyancy frequency anomalies. No robust relationship between the QBO and El Niño–Southern Oscillation (ENSO) events can be established using the ERA-Interim reanalysis, and nine models consistently confirm little modulation of the ocean basin-wide Walker circulation and ENSO events by the QBO.</p>


2006 ◽  
Vol 6 ◽  
pp. 167-171 ◽  
Author(s):  
A. R. M. Drumond ◽  
T. Ambrizzi

Abstract. Previous studies have discussed the interannual variability of a meridional seesaw of dry and wet conditions over South America (SA) associated to the modulation of the South Atlantic Convergence Zone (SACZ). However, they did not explore if the variability inter ENSO (El Niño Southern Oscillation) can be related to the phase changes of this dipole. To answer this question, an observational work was carried out to explore the atmospheric and Sea Surface Temperature (SST) conditions related to the same ENSO signal and to opposite dipole phases. Rotated Empirical Orthogonal Function (REOF) analysis was applied over normalized Chen precipitation seasonal anomalies in order to find the dipole mode in the Austral Summer (December to February). The fourth rotated mode, explaining 6.6% of the total variance, consists of positive loading over the SACZ region and negative loading over northern Argentina. Extreme events were selected and enhanced activity of SACZ during the Summer season (SACZ+) was identified in nine years: five during La Niña events (LN) and two in El Niño episodes (EN). On the other hand, inhibited manifestations of this system (SACZ-) were identified in seven years: four in EN and two during LN. Power spectrum analysis indicated that the interannual variability of the precipitation dipole seems to be related to the low frequency and to the quasi-biennial part of ENSO variability. The ENSO events with the same signal can present opposite phases for the dipole. The results suggest that the displacement of the convection over Indonesia and western Pacific can play an important role to modulate the seesaw pattern.


Ocean Science ◽  
2005 ◽  
Vol 1 (2) ◽  
pp. 81-95 ◽  
Author(s):  
G. J. van Oldenborgh ◽  
S. Y. Philip ◽  
M Collins

Abstract. In many parts of the world, climate projections for the next century depend on potential changes in the properties of the El Niño - Southern Oscillation (ENSO). The current staus of these projections is assessed by examining a large set of climate model experiments prepared for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Firstly, the patterns and time series of present-day ENSO-like model variability in the tropical Pacific Ocean are compared with that observed. Next, the strength of the coupled atmosphere-ocean feedback loops responsible for generating the ENSO cycle in the models are evaluated. Finally, we consider the projections of the models with, what we consider to be, the most realistic ENSO variability. Two of the models considered do not have interannual variability in the tropical Pacific Ocean. Three models show a very regular ENSO cycle due to a strong local wind feedback in the central Pacific and weak sea surface temperature (SST) damping. Six other models have a higher frequency ENSO cycle than observed due to a weak east Pacific upwelling feedback loop. One model has much stronger upwelling feedback than observed, and another one cannot be described simply by the analysis technique. The remaining six models have a reasonable balance of feedback mechanisms and in four of these the interannual mode also resembles the observed ENSO both spatially and temporally. Over the period 2051-2100 (under various scenarios) the most realistic six models show either no change in the mean state or a slight shift towards El Niño-like conditions with an amplitude at most a quarter of the present day interannual standard deviation. We see no statistically significant changes in amplitude of ENSO variability in the future, with changes in the standard deviation of a Southern Oscillation Index that are no larger than observed decadal variations. Uncertainties in the skewness of the variability are too large to make any statements about the future relative strength of El Niño and La Niña events. Based on this analysis of the multi-model ensemble, we expect very little influence of global warming on ENSO.


2017 ◽  
Vol 30 (3) ◽  
pp. 1041-1059 ◽  
Author(s):  
Andrew M. Chiodi ◽  
D. E. Harrison

Abstract The fundamental importance of near-equatorial zonal wind stress in the evolution of the tropical Pacific Ocean’s seasonal cycle and El Niño–Southern Oscillation (ENSO) events is well known. It has been two decades since the TAO/TRITON buoy array was deployed, in part to provide accurate surface wind observations across the Pacific waveguide. It is timely to revisit the impact of TAO/TRITON winds on our ability to simulate and thereby understand the evolution of sea surface temperature (SST) in this region. This work shows that forced ocean model simulations of SST anomalies (SSTAs) during the periods with a reasonably high buoy data return rate can reproduce the major elements of SSTA variability during ENSO events using a wind stress field computed from TAO/TRITON observations only. This demonstrates that the buoy array usefully fulfills its waveguide-wind-measurement purpose. Comparison of several reanalysis wind fields commonly used in recent ENSO studies with the TAO/TRITON observations reveals substantial biases in the reanalyses that cause substantial errors in the variability and trends of the reanalysis-forced SST simulations. In particular, the negative trend in ERA-Interim is much larger and the NCEP–NCAR Reanalysis-1 and NCEP–DOE Reanalysis-2 variability much less than seen in the TAO/TRITON wind observations. There are also mean biases. Thus, even with the TAO/TRITON observations available for assimilation into these wind products, there remain oceanically important differences. The reanalyses would be much more useful for ENSO and tropical Pacific climate change study if they would more effectively assimilate the TAO/TRITON observations.


2016 ◽  
Vol 46 (11) ◽  
pp. 3397-3414 ◽  
Author(s):  
Hiroto Abe ◽  
Youichi Tanimoto ◽  
Takuya Hasegawa ◽  
Naoto Ebuchi

AbstractThe present study examined ENSO-related wind forcing contribution to off-equatorial Rossby wave formations in the eastern tropical regions of the North and South Pacific using satellite altimeter data and atmospheric reanalysis data during the period of 1993–2013. After mature phases of ENSO events, the sea surface height anomaly fields showed that off-equatorial Rossby waves propagated westward along 11°N and 8°S from the eastern Pacific. Starting longitudes of the westward propagation were distant from the eastern coast, especially for weak El Niño events in the 2000s, in contrast to the strong 1997/98 El Niño event in which the propagations started from the coast. Based on observational data, it was hypothesized that the Rossby waves could be formed by off-equatorial zonal belts of wind stress curl anomalies (WSCAs) in 135°–90°W rather than by wave emissions from the eastern coast. A numerical model forced only by WSCAs, that is, without wave emissions from the coast, successfully reproduced observed features of the Rossby waves in 180°–120°W, supporting the study’s hypothesis. During mature phases of El Niño events, equatorially symmetric negative sea level pressure anomalies (SLPAs) resulting from hydrostatic adjustment to the underlying warm sea surface temperature anomalies dominated over the eastern tropical Pacific. Anomalous surface easterlies blowing around the negative SLPA area as geostrophic winds were a major contributor in forming the anticyclonic WSCAs. The polarity of the anomalies is reversed during La Niña events. Therefore, spatial patterns of the SLPAs associated with the ENSO events are necessary to understand the Rossby wave formations.


2006 ◽  
Vol 19 (17) ◽  
pp. 4397-4417 ◽  
Author(s):  
N. H. Saji ◽  
S-P. Xie ◽  
T. Yamagata

Abstract The twentieth-century simulations using by 17 coupled ocean–atmosphere general circulation models (CGCMs) submitted to the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC AR4) are evaluated for their skill in reproducing the observed modes of Indian Ocean (IO) climate variability. Most models successfully capture the IO’s delayed, basinwide warming response a few months after El Niño–Southern Oscillation (ENSO) peaks in the Pacific. ENSO’s oceanic teleconnection into the IO, by coastal waves through the Indonesian archipelago, is poorly simulated in these models, with significant shifts in the turning latitude of radiating Rossby waves. In observations, ENSO forces, by the atmospheric bridge mechanism, strong ocean Rossby waves that induce anomalies of SST, atmospheric convection, and tropical cyclones in a thermocline dome over the southwestern tropical IO. While the southwestern IO thermocline dome is simulated in nearly all of the models, this ocean Rossby wave response to ENSO is present only in a few of the models examined, suggesting difficulties in simulating ENSO’s teleconnection in surface wind. A majority of the models display an equatorial zonal mode of the Bjerknes feedback with spatial structures and seasonality similar to the Indian Ocean dipole (IOD) in observations. This success appears to be due to their skills in simulating the mean state of the equatorial IO. Corroborating the role of the Bjerknes feedback in the IOD, the thermocline depth, SST, precipitation, and zonal wind are mutually positively correlated in these models, as in observations. The IOD–ENSO correlation during boreal fall ranges from −0.43 to 0.74 in the different models, suggesting that ENSO is one, but not the only, trigger for the IOD.


2021 ◽  
pp. 1-44
Author(s):  
Richard Seager ◽  
Naomi Henderson ◽  
Mark Cane ◽  
Honghai Zhang ◽  
Jennifer Nakamura

AbstractPersistent multiyear cold states of the tropical Pacific Ocean drive hydroclimate anomalies worldwide, including persistent droughts in the extratropical Americas. Here, the atmosphere and ocean dynamics and thermodynamics of multiyear cold states of the tropical Pacific Ocean are investigated using European Centre for Medium-Range Weather Forecasts reanalyses and simplified models of the ocean and atmosphere. The cold states are maintained by anomalous ocean heat flux divergence and damped by increased surface heat flux from the atmosphere to ocean. The anomalous ocean heat flux divergence is contributed to by both changes in the ocean circulation and thermal structure. The keys are an anomalously shallow thermocline that enhances cooling by upwelling and anomalous westward equatorial currents that enhance cold advection. The thermocline depth anomalies are shown to be a response to equatorial wind stress anomalies. The wind stress anomalies are shown to be a simple dynamical response to equatorial SST anomalies as mediated by precipitation anomalies. The cold states are fundamentally maintained by atmosphere-ocean coupling in the equatorial Pacific. The physical processes that maintain the cold states are well approximated by linear dynamics for ocean and atmosphere and simple thermodynamics.


2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Fanghua Xu 1

A simple temperature-dependent wind stress scheme is implemented in National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM), aiming to enhance positive wind stress and sea surface temperature (SST) correlation in SST-frontal regions. A series of three-year coupled experiments are conducted to determine a proper coupling coefficient for the scheme based on the agreement of surface wind stress and SST at oceanic mesoscale between model simulations and observations. Afterwards, 80-year simulations with/without the scheme are conducted to explore its effects on simulated ocean states and variability. The results show that the new scheme indeed improves the positive correlation between SST and wind stress magnitude near the large oceanic fronts. With more realistic surface heat flux and wind stress, the global SST biases are reduced. The global ocean circulation represented by barotropic stream function exhibits a weakened gyre circulation close to the western boundary separation, in agreement with previous studies. The simulation of equatorial Pacific current system is improved as well. The overestimated El Niño Southern Oscillation (ENSO) magnitude in original CESM is reduced by ~30% after using the new scheme with an improved period.


Sign in / Sign up

Export Citation Format

Share Document