The Effect of Channel Length on the Residual Circulation in Tidally Dominated Channels

2005 ◽  
Vol 35 (10) ◽  
pp. 1826-1840 ◽  
Author(s):  
Chunyan Li ◽  
James O’Donnell

Abstract With an analytic model, this paper describes the subtidal circulation in tidally dominated channels of different lengths, with arbitrary lateral depth variations. The focus is on an important parameter associated with the reversal of the exchange flows. This parameter (δ) is defined as the ratio between the channel length and one-quarter of the tidal wavelength, which is determined by water depth and tidal frequency. In this study, a standard bottom drag coefficient, CD = 0.0025, is used. For a channel with δ smaller than 0.6–0.7 (short channels), the exchange flow at the open end has an inward transport in deep water and an outward transport in shallow water. This situation is just the opposite of channels with a δ value larger than 0.6–0.7 (long channels). For a channel with a δ value of about 0.35–0.5, the exchange flow at the open end reaches the maximum of a short channel. For a channel with a δ value of about 0.85–1.0, the exchange flow at the open end reaches the maximum of a long channel, with the inward flux of water occurring over the shoal area and the outward flow in the deep-water area. However, near the closed end of a long channel, the exchange flow appears as that in a short channel—that is, the exchange flow changes direction along the channel from the head to the open end of the channel. For a channel with a δ value of about 0.6–0.7, the tidally induced subtidal exchange flow at the open end reaches its minimum when there is little flow across the open end and the water residence time reaches its maximum. The mean sea level increases toward the closed end for all δ values. However, the spatial gradient of the mean sea level in a short channel is much smaller than that of a long channel. The differences between short and long channels are caused by a shift in dynamical balance of momentum or, equivalently, a change in tidal wave characteristics from a progressive wave to a standing wave.

1993 ◽  
Vol 2 (6) ◽  
pp. 423-430
Author(s):  
Tetsuo Yanagi ◽  
Tatsuya Akaki
Keyword(s):  

2020 ◽  
Vol 9 (3) ◽  
pp. 185 ◽  
Author(s):  
Nevin Avşar ◽  
Şenol Kutoğlu

Global mean sea level has been rising at an increasing rate, especially since the early 19th century in response to ocean thermal expansion and ice sheet melting. The possible consequences of sea level rise pose a significant threat to coastal cities, inhabitants, infrastructure, wetlands, ecosystems, and beaches. Sea level changes are not geographically uniform. This study focuses on present-day sea level changes in the Black Sea using satellite altimetry and tide gauge data. The multi-mission gridded satellite altimetry data from January 1993 to May 2017 indicated a mean rate of sea level rise of 2.5 ± 0.5 mm/year over the entire Black Sea. However, when considering the dominant cycles of the Black Sea level time series, an apparent (significant) variation was seen until 2014, and the rise in the mean sea level has been estimated at about 3.2 ± 0.6 mm/year. Coastal sea level, which was assessed using the available data from 12 tide gauge stations, has generally risen (except for the Bourgas Station). For instance, from the western coast to the southern coast of the Black Sea, in Constantza, Sevastopol, Tuapse, Batumi, Trabzon, Amasra, Sile, and Igneada, the relative rise was 3.02, 1.56, 2.92, 3.52, 2.33, 3.43, 5.03, and 6.94 mm/year, respectively, for varying periods over 1922–2014. The highest and lowest rises in the mean level of the Black Sea were in Poti (7.01 mm/year) and in Varna (1.53 mm/year), respectively. Measurements from six Global Navigation Satellite System (GNSS) stations, which are very close to the tide gauges, also suggest that there were significant vertical land movements at some tide gauge locations. This study confirmed that according to the obtained average annual phase value of sea level observations, seasonal sea level variations in the Black Sea reach their maximum annual amplitude in May–June.


2013 ◽  
Vol 51 (8) ◽  
pp. 1323-1334 ◽  
Author(s):  
S.A. Melachroinos ◽  
F.G. Lemoine ◽  
N.P. Zelensky ◽  
D.D. Rowlands ◽  
S.B. Luthcke ◽  
...  

2013 ◽  
Vol 165 ◽  
pp. 1951-1956 ◽  
Author(s):  
Renato Mendes ◽  
Nuno Vaz ◽  
João M. Dias

2014 ◽  
Vol 27 (1) ◽  
pp. 101-102 ◽  
Author(s):  
Bismarck Jigena ◽  
Juan Vidal ◽  
Manuel Berrocoso
Keyword(s):  

1996 ◽  
Vol 424 ◽  
Author(s):  
M. D. Jacunski ◽  
M. S. Shur ◽  
T. Ytterdal ◽  
A. A. Owusu ◽  
M. Hack

AbstractWe present an analytical SPICE model for the AC and DC characteristics of n and p channel polysilicon TFTs which scales fully with channel length and width in all regimes of operation (leakage, subthreshold, above threshold, and kink) and accounts for the frequency dispersion of the capacitance. Once physically based parameters have been extracted from long channel TFTs, which include the gate length and drain bias dependencies of the device parameters, our model accurately reproduces short channel device characteristics. The AC model includes the input channel resistance in series with the gate oxide capacitance. As a result, our model is able to fit the frequency dispersion of the device capacitances. The model has been implemented in the AIM-Spice simulator and good agreement is observed between measured and modeled results for gate lengths down to 4 gim.


2014 ◽  
Vol 910 ◽  
pp. 40-43
Author(s):  
Win Der Lee ◽  
Mu Chun Wang

Exposing the Early effect (or called channel-length modulation effect) at deep subnano node high-k/metal gate (HK/MG) process is still beneficial to IC designers to reduce the obsession in design. This effect contributes the operating point in circuit concern and process adjustment. For the long channel device, the intercept under various gate voltages focuses on one point consistent with conventional device. However, the divergent phenomenon was observed at the short channel tested device due to the higher strain effect, causing the non-uniform electrical field distribution in channel.


Author(s):  
L. Rickards ◽  
A. Matthwes ◽  
K. Gordon ◽  
M. Tamisea ◽  
S. Jevrejeva ◽  
...  

Abstract. The PSMSL was established as a “Permanent Service” of the International Council for Science in 1958, but in practice was a continuation of the Mean Sea Level Committee which had been set up at the Lisbon International Union of Geodesy and Geophysics (IUGG) conference in 1933. Now in its 80th year, the PSMSL continues to be the internationally recognised databank for long-term sea level change information from tide gauge records. The PSMSL dataset consists of over 2100 mean sea level records from across the globe, the longest of which date back to the start of the 19th century. Where possible, all data in a series are provided to a common benchmark-controlled datum, thus providing a record suitable for use in time series analysis. The PSMSL dataset is freely available for all to use, and is accessible through the PSMSL website (www.psmsl.org).


2021 ◽  
Vol 33 (6) ◽  
pp. 298-307
Author(s):  
A Jeong Kim ◽  
Myeong Hee Lee ◽  
Seung Won Suh

Typhoons occur intensively between July and October, and the sea level is the highest during this time. In particular, the mean sea level in summer in Korea is higher than the annual mean sea level about 14.5cm in the west coast, 9.0 to 14.5cm in the south coast, and about 9.0 cm in the east coast. When the rising the sea level and a large typhoon overlap in summer, it can cause surges and flooding in low-lying coastal areas. Therefore, accurate calculation of the surge height is essential when designing coastal structures and assessing stability in order to reduce coastal hazards on the lowlands. In this study, the typhoon surge heights considering the summer mean sea level rise (SH_m) was calculated, and the validity of the analysis of abnormal phenomena was reviewed by comparing it with the existing surge height considering the annual mean sea level (SH_a). As a result of the re-analyzed study of typhoon surge heights for BOLAVEN (SANBA), which influenced in August and September during the summer sea level rise periods, yielded the differences of surge heights (cm) between SH_a and SH_m 7.8~24.5 (23.6~34.5) for the directly affected zone of south-west (south-east) coasts, while for the indirect south-east (south-west) coasts showed -1.0~0.0 (8.3~12.2), respectively. Whilst the differences between SH_a and SH_m of typhoons CHABA (KONG-REY) occurred in October showed remarkably lessened values as 5.2~ 14.2 (19.8~21.6) for the directly affected south-east coasts and 3.2~6.3 (-3.2~3.7) for the indirectly influenced west coast, respectively. The results show the SH_a does not take into account the increased summer mean sea level, so it is evaluated that it is overestimated compared to the surge height that occurs during an actual typhoon. Therefore, it is judged that it is necessary to re-discuss the feasibility of the surge height standard design based on the existing annual mean sea level, along with the accurate establishment of the concept of surge height.


Tellus ◽  
1964 ◽  
Vol 16 (4) ◽  
pp. 513-516
Author(s):  
Axel Jessen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document