scholarly journals Seasonal Barotropic Modulation of the Deep-Water Overflow through the Faroe Bank Channel

2006 ◽  
Vol 36 (12) ◽  
pp. 2328-2339 ◽  
Author(s):  
Iréne Lake ◽  
Peter Lundberg

Abstract As a joint Nordic project, an upward-looking ADCP has been maintained at the sill of the Faroe Bank Channel from 1995 onward. Records from a period in 1998 with three current meters deployed across the channel were used to demonstrate that the Faroe Bank Channel deep-water transport from the Norwegian Sea into the North Atlantic Ocean proper can be reasonably well estimated from one centrally located ADCP. The long-term average of this transport over the period 1995–2001 was found to be 2.1 Sv (Sv ≡ 106 m−3 s−1). The transport record demonstrates a pronounced seasonality. Satellite altimetry shows that this is caused by the northbound Atlantic surface water inflow giving rise to a barotropic modulation of the deep-water flow through the Faroe–Shetland Channel and the southern reaches of the Norwegian Sea.

2012 ◽  
Vol 81 (3) ◽  
pp. 1133-1137 ◽  
Author(s):  
R. P. Vieira ◽  
B. Christiansen ◽  
S. Christiansen ◽  
J. M. S. Gonçalves

2015 ◽  
Vol 42 (2) ◽  
pp. 316-322 ◽  
Author(s):  
Éric Beucler ◽  
Antoine Mocquet ◽  
Martin Schimmel ◽  
Sébastien Chevrot ◽  
Olivier Quillard ◽  
...  

2007 ◽  
Vol 22 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Nave ◽  
L. Labeyrie ◽  
J. Gherardi ◽  
N. Caillon ◽  
E. Cortijo ◽  
...  

2018 ◽  
Vol 15 (18) ◽  
pp. 5663-5676 ◽  
Author(s):  
Jill N. Sutton ◽  
Gregory F. de Souza ◽  
Maribel I. García-Ibáñez ◽  
Christina L. De La Rocha

Abstract. The stable isotope composition of dissolved silicon in seawater (δ30SiDSi) was examined at 10 stations along the GEOVIDE section (GEOTRACES GA-01), spanning the North Atlantic Ocean (40–60∘ N) and Labrador Sea. Variations in δ30SiDSi below 500 m were closely tied to the distribution of water masses. Higher δ30SiDSi values are associated with intermediate and deep water masses of northern Atlantic or Arctic Ocean origin, whilst lower δ30SiDSi values are associated with DSi-rich waters sourced ultimately from the Southern Ocean. Correspondingly, the lowest δ30SiDSi values were observed in the deep and abyssal eastern North Atlantic, where dense southern-sourced waters dominate. The extent to which the spreading of water masses influences the δ30SiDSi distribution is marked clearly by Labrador Sea Water (LSW), whose high δ30SiDSi signature is visible not only within its region of formation within the Labrador and Irminger seas, but also throughout the mid-depth western and eastern North Atlantic Ocean. Both δ30SiDSi and hydrographic parameters document the circulation of LSW into the eastern North Atlantic, where it overlies southern-sourced Lower Deep Water. The GEOVIDE δ30SiDSi distribution thus provides a clear view of the direct interaction between subpolar/polar water masses of northern and southern origin, and allow examination of the extent to which these far-field signals influence the local δ30SiDSi distribution.


Nature ◽  
1980 ◽  
Vol 286 (5772) ◽  
pp. 479-482 ◽  
Author(s):  
Jean-Claude Duplessy ◽  
J. Moyes ◽  
C. Pujol

2009 ◽  
Vol 5 (4) ◽  
pp. 2081-2113 ◽  
Author(s):  
C. Andersson ◽  
F. S. R. Pausata ◽  
E. Jansen ◽  
B. Risebrobakken ◽  
R. J. Telford

Abstract. The early to mid-Holocene thermal optimum is a well-known feature in a wide variety of paleoclimate archives from the Northern Hemisphere. Reconstructed summer temperature anomalies from across northern Europe show a clear maximum around 6 ka. For the marine realm, Holocene trends in sea-surface temperature reconstructions for the North Atlantic and Norwegian Sea do not exhibit a consistent pattern of early to mid-Holocene warmth. Sea-surface temperature records based on alkenones and diatoms generally show the existence of a warm early to mid-Holocene optimum. In contrast, several foraminifer and radiolarian based temperature records from the North Atlantic and Norwegian Sea show a cool mid-Holocene anomaly and a trend towards warmer temperatures in the late Holocene. In this paper, we revisit the foraminifer record from the Vøring Plateau in the Norwegian Sea. We also compare this record with published foraminifer based temperature reconstructions from the North Atlantic and with modelled (CCSM3) upper ocean temperatures. Model results indicate that while the seasonal summer warming of the sea-surface was stronger during the mid-Holocene, sub-surface depths experienced a cooling. This hydrographic setting can explain the discrepancies between the Holocene trends exhibited by phytoplankton and zooplankton based temperature proxy records.


1982 ◽  
Vol 18 (1) ◽  
pp. 72-90 ◽  
Author(s):  
S. Stephen Streeter ◽  
Paul E. Belanger ◽  
Thomas B. Kellogg ◽  
Jean Claude Duplessy

AbstractFluctuations in benthic foraminiferal faunas over the last 130,000 yr in four piston cores from the Norwegian Sea are correlated with the standard worldwide oxygen-isotope stratigraphy. One species, Cibicides wuellerstorfi, dominates in the Holocene section of each core, but alternates downcore with Oridorsalis tener, a species dominant today only in the deepest part of the basin. O. tener is the most abundant species throughout the entire basin during periods of particularly cold climate when the Norwegian Sea presumably was ice covered year round and surface productivity lowered. Portions of isotope Stages 6, 3, and 2 are barren of benthic foraminifera; this is probably due to lowered benthic productivity, perhaps combined with dilution by ice-rafted sediment; there is no evidence that the Norwegian Sea became azoic. The Holocene and Substage 5e (the last interglacial) are similar faunally. This similarity, combined with other evidence, supports the presumption that the Norwegian Sea was a source of dense overflows into the North Atlantic during Substage 5e as it is today. Oxygen-isotope analyses of benthic foraminifera indicate that Norwegian Sea bottom waters warmer than they are today from Substage 5d to Stage 2, with the possible exception of Substage 5a. These data show that the glacial Norwegian Sea was not a sink for dense surface water, as it is now, and thus it was not a source of deep-water overflows. The benthic foraminiferal populations of the deep Norwegian Sea seem at least as responsive to near-surface conditions, such as sea-ice cover, as they are to fluctuations in the hydrography of the deep water. Benthic foraminiferal evidence from the Norwegian Sea is insufficient in itself to establish whether or not the basin was a source of overflows into the North Atlantic at any time between the Substage 5e/5d boundary at 115,000 yr B.P. and the Holocene.


Sign in / Sign up

Export Citation Format

Share Document