scholarly journals Brightness Temperature Simulation of Observed Precipitation Using a Three-Dimensional Radiative Transfer Model

2016 ◽  
Vol 33 (10) ◽  
pp. 2053-2064 ◽  
Author(s):  
Ian S. Adams ◽  
Michael H. Bettenhausen

AbstractThis study demonstrates the capabilities of a three-dimensional radiative transfer model coupled to a polarized microwave surface emissivity model. Simulations are performed at 10, 19, and 37 GHz for TMI and WindSat using three-dimensional fields of rain, snow, and graupel derived from Tropical Rainfall Measuring Mission observations of moderate Tropical Storm Asma in conjunction with atmospheric profiles and surface fields from ECMWF. Simulations are well behaved and compare well with measured brightness temperatures. Comparisons are made between simulations with a wind-roughened surface and simulations assuming a specular surface. This theoretical study, which is supported with WindSat retrievals, shows the frequencies and conditions under which surface emissions may be detected in the presence of rain.

2016 ◽  
Vol 33 (12) ◽  
pp. 2553-2567 ◽  
Author(s):  
X. Zou ◽  
X. Zhuge ◽  
F. Weng

AbstractStarting in 2014, the new generation of Japanese geostationary meteorological satellites carries an Advanced Himawari Imager (AHI) to provide the observations of visible, near infrared, and infrared with much improved spatial and temporal resolutions. For applications of the AHI measurements in numerical weather prediction (NWP) data assimilation systems, the biases of the AHI brightness temperatures at channels 7–16 from the model simulations are first characterized and evaluated using both the Community Radiative Transfer Model (CRTM) and the Radiative Transfer for the TIROS Operational Vertical Sounder (RTTOV). It is found that AHI biases under a clear-sky atmosphere are independent of satellite zenith angle except for channel 7. The biases of three water vapor channels increase with scene brightness temperatures and are nearly constant except at high brightness temperatures for the remaining infrared channels. The AHI biases at all the infrared channels are less than 0.6 and 1.2 K over ocean and land, respectively. The differences in biases between RTTOV and CRTM with the land surface emissivity model used in RTTOV are small except for the upper-tropospheric water vapor channels 8 and 9 and the low-tropospheric carbon dioxide channel 16. Since the inputs used for simulations are the same for CRTM and RTTOV, the differential biases at the water vapor channels may be associated with subtle differences in forward models.


2015 ◽  
Vol 12 (12) ◽  
pp. 13019-13067
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
P. de Rosnay ◽  
M. Piles ◽  
E. Gelati

Abstract. L-Band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm. The work exposed compares brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were estimated using a radiative transfer model and state variables from two land surface models: (i) ORganising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and (ii) Hydrology – Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL). The radiative transfer model used is the Community Microwave Emission Model (CMEM). A good agreement in the temporal evolution of measured and modelled brightness temperatures is observed. However, their spatial structures are not consistent between them. An Empirical Orthogonal Function analysis of the brightness temperature's error identifies a dominant structure over the South-West of the Iberian Peninsula which evolves during the year and is maximum in Fall and Winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for it at the moment. Further hypotheses are proposed at the end of the paper.


2021 ◽  
Author(s):  
Megan Stretton ◽  
William Morrison ◽  
Robin Hogan ◽  
Sue Grimmond

<p>The heterogenous structure of cities impacts radiative exchanges (e.g. albedo and heat storage). Numerical weather prediction (NWP) models often characterise the urban structure with an infinite street canyon – but this does not capture the three-dimensional urban form. SPARTACUS-Urban (SU) - a fast, multi-layer radiative transfer model designed for NWP - is evaluated using the explicit Discrete Anisotropic Radiative Transfer (DART) model for shortwave fluxes across several model domains – from a regular array of cubes to real cities .</p><p>SU agrees with DART (errors < 5.5% for all variables) when the SU assumptions of building distribution are fulfilled (e.g. randomly distribution). For real-world areas with pitched roofs, SU underestimates the albedo (< 10%) and shortwave transmission to the surface (< 15%), and overestimates wall-plus-roof absorption (9-27%), with errors increasing with solar zenith angle. SU should be beneficial to weather and climate models, as it allows more realistic urban form (cf. most schemes) without large increases in computational cost.</p>


2020 ◽  
Author(s):  
Yuma Sakai ◽  
Hideki Kobayashi ◽  
Tomomichi Kato

Abstract. Global terrestrial ecosystems control the atmospheric CO2 concentration through gross primary production (GPP) and ecosystem respiration processes. Chlorophyll fluorescence is one of the energy release pathways of excess incident lights in the photosynthetic process. Over the last ten years, extensive studies have been revealed that canopy scale sun-induced chlorophyll fluorescence (SIF), which potentially provides a direct pathway to link leaf level photosynthesis to global GPP, can be observed from satellites. SIF is used to infer photosynthetic capacity of plant canopy, however, it is not clear how the leaf-level SIF emission contributes to the top of canopy directional SIF. Plant canopy radiative transfer models are the useful tools to understand the causality of directional canopy SIF. One dimensional (1-D) plane parallel layer models (e.g. the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model) have been widely used and are useful to understand the general mechanisms behind the temporal and seasonal variations in SIF. However, due to the lack of complexity of the actual canopy structures, three dimensional models (3-D) have a potential to delineate the realistic directional canopy SIFs. Forest Light Environmental Simulator for SIF (FLiES-SIF) version 1.0 is the 3-D Monte Carlo plant canopy radiative transfer model to understand the biological and physical mechanisms behind the SIF emission from complex forest canopies. In this model description paper, we focused on the model formulation and simulation schemes, and showed some sensitivity analysis against several major variables such as view angle and leaf area index (LAI). The simulation results show that SIF increases with LAI then saturated at LAI > 2–4 depending on the spectral wavelength. The sensitivity analysis also shows that simulated SIF radiation may decrease with LAI at higher LAI domain (LAI > 5). These phenomena are seen in certain sun and view angle conditions. This type of non-linear and non-monotonic SIF behavior to LAI is also related to spatial forest structure patterns. FLiES-SIF version 1.0 can be used to quantify the canopy SIF in various view angles including the contribution of multiple scattering which is the important component in the near infrared domain. The potential use of the model is to standardize the satellite SIF by correcting the bi-directional effect. This step will contribute to the improvement of the GPP estimation accuracy through SIF.


2019 ◽  
Vol 489 (4) ◽  
pp. 4690-4704 ◽  
Author(s):  
Jong-Ho Shinn

ABSTRACT We have revisited the target EON_10.477_41.954 in order to determine more accurately the uncertainties in the model parameters that are important for target classification (i.e. galaxies with or without substantial extraplanar dust). We performed a Markov chain Monte Carlo (MCMC) analysis for the 15 parameters of the three-dimensional radiative-transfer galaxy model we used previously for target classification. To investigate the convergence of the MCMC sampling – which is usually neglected in the literature but should not be – we monitored the integrated autocorrelation time (τint), and we achieved effective sample sizes >5650 for all the model parameters. The confidence intervals are unstable at the beginning of the iterations where the values of τint are increasing, but they become stable in later iterations where those values are almost constant. The final confidence intervals are ∼5–100 times larger than the nominal uncertainties used in our previous study (the standard deviation of three best-fitting results). Thus, those nominal uncertainties are not good proxies for the model-parameter uncertainties. Although the position of EON_10.477_41.954 in the target-classification plot (the scale height to diameter ratio of dust versus that of light source) decreases by about 20–30 per cent when compared to our previous study, its membership in the ‘high-group’ – i.e. among galaxies with substantial extraplanar dust – nevertheless remains unchanged.


2010 ◽  
Vol 27 (10) ◽  
pp. 1609-1623 ◽  
Author(s):  
B. Petrenko ◽  
A. Ignatov ◽  
Y. Kihai ◽  
A. Heidinger

Abstract The Advanced Clear Sky Processor for Oceans (ACSPO) generates clear-sky products, such as SST, clear-sky radiances, and aerosol, from Advanced Very High Resolution Radiometer (AVHRR)-like measurements. The ACSPO clear-sky mask (ACSM) identifies clear-sky pixels within the ACSPO products. This paper describes the ACSM structure and compares the performances of ACSM and its predecessor, Clouds from AVHRR Extended Algorithm (CLAVRx). ACSM essentially employs online clear-sky radiative transfer simulations enabled within ACSPO with the Community Radiative Transfer Model (CRTM) in conjunction with numerical weather prediction atmospheric [Global Forecast System (GFS)] and SST [Reynolds daily high-resolution blended SST (DSST)] fields. The baseline ACSM tests verify the accuracy of fitting observed brightness temperatures with CRTM, check retrieved SST for consistency with Reynolds SST, and identify ambient cloudiness at the boundaries of cloudy systems. Residual cloud effects are screened out with several tests, adopted from CLAVRx, and with the SST spatial uniformity test designed to minimize misclassification of sharp SST gradients as clouds. Cross-platform and temporal consistencies of retrieved SSTs are maintained by accounting for SST and brightness temperature biases, estimated within ACSPO online and independently from ACSM. The performance of ACSM is characterized in terms of statistics of deviations of retrieved SST from the DSST. ACSM increases the amount of “clear” pixels by 30% to 40% and improves statistics of retrieved SST compared with CLAVRx. ACSM is also shown to be capable of producing satisfactory statistics of SST anomalies if the reference SST field for the exact date of observations is unavailable at the time of processing.


Sign in / Sign up

Export Citation Format

Share Document