scholarly journals Impacts of Partly Cloudy Pixels on Shortwave Broadband Irradiance Computations

2019 ◽  
Vol 36 (3) ◽  
pp. 369-386 ◽  
Author(s):  
Seung-Hee Ham ◽  
Seiji Kato ◽  
Fred G. Rose

AbstractBecause of the limitation of the spatial resolution of satellite sensors, satellite pixels identified as cloudy are often partly cloudy. For the first time, this study demonstrates the bias in shortwave (SW) broadband irradiances for partly cloudy pixels when the cloud optical depths are retrieved with an overcast and homogeneous assumption, and subsequently, the retrieved values are used for the irradiance computations. The sign of the SW irradiance bias is mainly a function of viewing geometry of the cloud retrieval. The bias in top-of-atmosphere (TOA) upward SW irradiances is positive for small viewing zenith angles (VZAs) <~60° and negative for large VZAs >~60°. For a given solar zenith angle and viewing geometry, the magnitude of the bias increases with the cloud optical depth and reaches a maximum at the cloud fraction between 0.2 and 0.8. The sign of the SW surface net irradiance bias is opposite of the sign of TOA upward irradiance bias, with a similar magnitude. As a result, the bias in absorbed SW irradiances by the atmosphere is smaller than the biases in both TOA and surface irradiances. The monthly mean biases in SW irradiances due to partly cloudy pixels are <1.5 W m−2 when cloud properties are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua.

2011 ◽  
Vol 24 (16) ◽  
pp. 4435-4450 ◽  
Author(s):  
Shan Zeng ◽  
Frédéric Parol ◽  
Jérôme Riedi ◽  
Céline Cornet ◽  
François Thieuleux

Abstract The Polarization and Anisotropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL) and Aqua are two satellites on sun-synchronous orbits in the A-Train constellation. Aboard these two platforms, the Polarization and Directionality of Earth Reflectances (POLDER) and Moderate Resolution Imaging Spectroradiometer (MODIS) provide quasi simultaneous and coincident observations of cloud properties. The similar orbits but different detecting characteristics of these two sensors call for a comparison between the derived datasets to identify and quantify potential uncertainties in retrieved cloud properties. To focus on the differences due to different sensor spatial resolution and coverage, while minimizing sampling and weighting issues, the authors have recomputed monthly statistics directly from the respective official level-2 products. The authors have developed a joint dataset that contains both POLDER and MODIS level-2 cloud products collocated on a common sinusoidal grid. The authors have then computed and analyzed monthly statistics of cloud fractions corresponding either to the total cloud cover or to the “retrieved” cloud fraction for which cloud optical properties are derived. These simple yet crucial cloud statistics need to be clearly understood to allow further comparison work of the other cloud parameters. From this study, it is demonstrated that on average POLDER and MODIS datasets capture correctly the main characteristics of global cloud cover and provide similar spatial distributions and temporal variations. However, each sensor has its own advantages and weaknesses in discriminating between clear and cloudy skies in particular situations. Also it is shown that significant differences exist between the MODIS total cloud fraction (day mean) and the “retrieved” cloud fraction (combined mean). This study found a global negative difference of about 10% between POLDER and MODIS day-mean cloud fraction. On the contrary, a global positive difference of about 10% exists between POLDER and MODIS combined-mean cloud fraction. These statistical biases show both global and regional distributions that can be driven by sensors characteristics, environmental factors, and also carry potential information on cloud cover structure. These results provide information on the quality of cloud cover derived from POLDER and MODIS and should be taken into account for the use of other cloud products.


2016 ◽  
Vol 29 (6) ◽  
pp. 2023-2040 ◽  
Author(s):  
Qing Yue ◽  
Brian H. Kahn ◽  
Eric J. Fetzer ◽  
Mathias Schreier ◽  
Sun Wong ◽  
...  

Abstract The authors present a new method to derive both the broadband and spectral longwave observation-based cloud radiative kernels (CRKs) using cloud radiative forcing (CRF) and cloud fraction (CF) for different cloud types using multisensor A-Train observations and MERRA data collocated on the pixel scale. Both observation-based CRKs and model-based CRKs derived from the Fu–Liou radiative transfer model are shown. Good agreement between observation- and model-derived CRKs is found for optically thick clouds. For optically thin clouds, the observation-based CRKs show a larger radiative sensitivity at TOA to cloud-cover change than model-derived CRKs. Four types of possible uncertainties in the observed CRKs are investigated: 1) uncertainties in Moderate Resolution Imaging Spectroradiometer cloud properties, 2) the contributions of clear-sky changes to the CRF, 3) the assumptions regarding clear-sky thresholds in the observations, and 4) the assumption of a single-layer cloud. The observation-based CRKs show the TOA radiative sensitivity of cloud types to unit cloud fraction change as observed by the A-Train. Therefore, a combination of observation-based CRKs with cloud changes observed by these instruments over time will provide an estimate of the short-term cloud feedback by maintaining consistency between CRKs and cloud responses to climate variability.


2016 ◽  
Vol 16 (1) ◽  
pp. 47-69 ◽  
Author(s):  
R. Alfaro-Contreras ◽  
J. Zhang ◽  
J. R. Campbell ◽  
J. S. Reid

Abstract. Seven and a half years (June 2006 to November 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol and cloud layer products are compared with collocated Ozone Monitoring Instrument (OMI) aerosol index (AI) data and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products in order to investigate variability in estimates of biannual and monthly above-cloud aerosol (ACA) events globally. The active- (CALIOP) and passive-based (OMI-MODIS) techniques have their advantages and caveats for ACA detection, and thus both are used to derive a thorough and robust comparison of daytime cloudy-sky ACA distribution and climatology. For the first time, baseline above-cloud aerosol optical depth (ACAOD) and AI thresholds are derived and examined (AI  =  1.0, ACAOD  =  0.015) for each sensor. Both OMI-MODIS and CALIOP-based daytime spatial distributions of ACA events show similar patterns during both study periods (December–May) and (June–November). Divergence exists in some regions, however, such as Southeast Asia during June through November, where daytime cloudy-sky ACA frequencies of up to 10 % are found from CALIOP yet are non-existent from the OMI-based method. Conversely, annual cloudy-sky ACA frequencies of 20–30 % are reported over northern Africa from the OMI-based method yet are largely undetected by the CALIOP-based method. Using a collocated OMI-MODIS-CALIOP data set, our study suggests that the cloudy-sky ACA frequency differences between the OMI-MODIS- and CALIOP-based methods are mostly due to differences in cloud detection capability between MODIS and CALIOP as well as QA flags used. An increasing interannual variability of  ∼  0.3–0.4 % per year (since 2009) in global monthly cloudy-sky ACA daytime frequency of occurrence is found using the OMI-MODIS-based method. Yet, CALIOP-based global daytime ACA frequencies exhibit a near-zero interannual variability. Further analysis suggests that the OMI-derived interannual variability in cloudy-sky ACA frequency may be affected by OMI row anomalies in later years. A few regions are found to have increasing slopes in interannual variability in cloudy-sky ACA frequency, including the Middle East and India. Regions with slightly negative slopes of the interannual variability in cloudy-sky ACA frequencies are found over South America and China, while remaining regions in the study show nearly zero change in ACA frequencies over time. The interannual variability in ACA frequency is not, however, statistically significant on both global and regional scales, given the relatively limited sample sizes. A longer data record of ACA events is needed in order to establish significant trends of ACA frequency regionally and globally.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 333 ◽  
Author(s):  
Saichun Tan ◽  
Xiao Zhang ◽  
Guangyu Shi

Haze pollution has frequently occurred in winter over Eastern China in recent years. Over Eastern China, Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection data were compared with the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) for three years (2013–2016) for three kinds of underlying surface types (dark, bright, and water). We found that MODIS and CALIOP agree most of the time (82% on average), but discrepancies occurred at low CALIOP cloud optical thickness (COT < 0.4) and low MODIS cloud top height (CTH < 1.5 km). In spring and summer, the CALIOP cloud fraction was higher by more than 0.1 than MODIS due to MODIS’s incapability of observing clouds with a lower COT. The discrepancy increased significantly with a decrease in MODIS CTH and an increase in aerosol optical depth (AOD, about 2–4 times), and MODIS observed more clouds that were undetected by CALIOP over PM2.5 > 75 μg m−3 regions in autumn and particularly in winter, suggesting that polluted weather over Eastern China may contaminate MODIS cloud detections because MODIS will misclassify a heavy aerosol layer as cloudy under intense haze conditions. Besides aerosols, the high solar zenith angle (SZA) in winter also affects MODIS cloud detection, and the ratio of MODIS cloud pixel numbers to CALIOP cloud-free pixel numbers at a high SZA increased a great deal (about 4–21 times) relative to that at low SZA for the three surfaces. As a result of the effects of aerosol and SZA, MODIS cloud fraction was 0.08 higher than CALIOP, and MODIS CTH was more than 2 km lower than CALIOP CTH in winter. As for the cloud phases and types, the results showed that most of the discrepancies could be attributed to water clouds and low clouds (cumulus and stratocumulus), which is consistent with most of the discrepancies at low MODIS CTH.


2013 ◽  
Vol 31 (10) ◽  
pp. 1773-1778 ◽  
Author(s):  
D. Narasimhan ◽  
S. K. Satheesh

Abstract. Aerosol absorption is poorly quantified because of the lack of adequate measurements. It has been shown that the Ozone Monitoring Instrument (OMI) aboard EOS-Aura and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard EOS-Aqua, which fly in formation as part of the A-train, provide an excellent opportunity to improve the accuracy of aerosol retrievals. Here, we follow a multi-satellite approach to estimate the regional distribution of aerosol absorption over continental India for the first time. Annually and regionally averaged aerosol single-scattering albedo over the Indian landmass is estimated as 0.94 ± 0.03. Our study demonstrates the potential of multi-satellite data analysis to improve the accuracy of retrieval of aerosol absorption over land.


2015 ◽  
Vol 15 (4) ◽  
pp. 4173-4217 ◽  
Author(s):  
R. Alfaro-Contreras ◽  
J. Zhang ◽  
J. R. Campbell ◽  
J. S. Reid

Abstract. Seven and a half years (June 2006–November 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol and cloud layer products are compared with collocated Ozone Monitoring Instrument (OMI) Aerosol Index (AI) data and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products, to investigate variability in estimates of bi-annual and monthly above-cloud aerosol (ACA) events globally. The active- (CALIOP) and passive-based (OMI-MODIS) techniques have their advantages and caveats for ACA detection, and thus both are used to get a thorough and robust comparison of daytime cloudy-sky ACA distribution and climatology. For the first time, baseline above-cloud aerosol optical depth (ACAOD) and AI thresholds are derived and examined (AI = 1.0, ACAOD = 0.015) for each sensor. Both OMI-MODIS and CALIOP-based daytime spatial distributions of ACA events show similar patterns during both study periods (December–May) and (June–November). Divergence exists in some regions, however, such as Southeast Asia during June through November, where daytime cloudy-sky ACA frequencies of up to 10% are found from CALIOP yet are non-existent from the OMI-based method. Conversely, annual cloudy-sky ACA frequencies of 20–30% are reported over Northern Africa from the OMI-based method, yet are largely undetected by the CALIOP-based method. This is possibly due to a misclassification of thick dust plumes as clouds by the OMI-MODIS based method. An increasing trend of ~0.5% per year (since 2009) in global monthly cloudy-sky ACA daytime frequency of occurrence is found using the OMI-MODIS based method. Yet, CALIOP-based global daytime ACA frequencies exhibit a near-zero trend. Further analysis suggests that the OMI derived cloudy-sky ACA frequency trend may be affected by OMI row anomalies in later years. A few regions are found to have increasing trends of cloudy-sky ACA frequency, including the Middle-East and India. Regions with slightly negative cloudy-sky ACA frequency trends are found over South America and the Southern Oceans, while remaining regions in the study show a near-zero trend. Global and regional trends are not statistically significant, though, given relatively lacking sample sizes. A longer data record of ACA events is needed in order to establish a more significant trend of ACA frequency regionally and globally.


2012 ◽  
Vol 25 (13) ◽  
pp. 4699-4720 ◽  
Author(s):  
Robert Pincus ◽  
Steven Platnick ◽  
Steven A. Ackerman ◽  
Richard S. Hemler ◽  
Robert J. Patrick Hofmann

Abstract The properties of clouds that may be observed by satellite instruments, such as optical thickness and cloud-top pressure, are only loosely related to the way clouds are represented in models of the atmosphere. One way to bridge this gap is through “instrument simulators,” diagnostic tools that map the model representation to synthetic observations so that differences can be interpreted as model error. But simulators may themselves be restricted by limited information or by internal assumptions. This paper considers the extent to which instrument simulators are able to capture essential differences between the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP), two similar but independent estimates of cloud properties. The authors review the measurements and algorithms underlying these two cloud climatologies, introduce a MODIS simulator, and detail datasets developed for comparison with global models using ISCCP and MODIS simulators. In nature MODIS observes less midlevel cloudiness than ISCCP, consistent with the different methods used to determine cloud-top pressure; aspects of this difference are reproduced by the simulators. Differences in observed distributions of optical thickness, however, are not captured. The largest differences can be traced to different approaches to partly cloudy pixels, which MODIS excludes and ISCCP treats as homogeneous. These cover roughly 15% of the planet and account for most of the optically thinnest clouds. Instrument simulators cannot reproduce these differences because there is no way to synthesize partly cloudy pixels. Nonetheless, MODIS and ISCCP observations are consistent for all but the optically thinnest clouds, and models can be robustly evaluated using instrument simulators by integrating over the robust subset of observations.


2020 ◽  
Vol 237 ◽  
pp. 02004
Author(s):  
Indira Gunaseelan ◽  
Vijay Bhaskar

Aerosols create great uncertainties in studying climate change under global warming and atmospheric dynamics. To understand the impacts of aerosols on cloud properties in Madurai, we have analyzed an extensive collection of aerosol and cloud properties, obtained from the Moderate resolution Imaging Spectroradiometer (MODIS) data, over the study site during 2012-2013. Monthly, seasonal and annual variations of aerosols and clouds studied along their interactions and impacts on climate. Considering annual averages for all these parameters, most often the year 2012 was dominated with a higher presence of AOD, COD, CER, CTT, CTP whereas rainfall and CF were found to be dominated in 2013. The presence of higher CF in 2013 may be a cause for the higher rainfall and the lower level of CF in 2012 may be a cause for less rainfall. High aerosol loading in this area is due to biomass burning and urban air pollution which may significantly suppress precipitation. Increased aerosols and the local aerosol emissions may reduce the precipitation efficiency, which is responsible for the precipitation reduction and vice-versa.


2020 ◽  
Vol 12 (20) ◽  
pp. 3334 ◽  
Author(s):  
Richard A. Frey ◽  
Steven A. Ackerman ◽  
Robert E. Holz ◽  
Steven Dutcher ◽  
Zach Griffith

This paper introduces the Continuity Moderate Resolution Imaging Spectroradiometer (MODIS)-Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Mask (MVCM), a cloud detection algorithm designed to facilitate continuity in cloud detection between the MODIS (Moderate Resolution Imaging Spectroradiometer) on the Aqua and Terra platforms and the series of VIIRS (Visible Infrared Imaging Radiometer Suite) instruments, beginning with the Soumi National Polar-orbiting Partnership (SNPP) spacecraft. It is based on the MODIS cloud mask that has been operating since 2000 with the launch of the Terra spacecraft (MOD35) and continuing in 2002 with Aqua (MYD35). The MVCM makes use of fourteen spectral bands that are common to both MODIS and VIIRS so as to create consistent cloud detection between the two instruments and across the years 2000–2020 and beyond. Through comparison data sets, including collocated Aqua MODIS and Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) from the A-Train, this study was designed to assign statistical consistency benchmarks between the MYD35 and MVCM cloud masks. It is shown that the MVCM produces consistent cloud detection results between Aqua MODIS, SNPP VIIRS, and NOAA-20 VIIRS and that the quality is comparable to the standard Aqua MODIS cloud mask. Globally, comparisons with collocated CALIOP lidar show combined clear and cloudy sky hit rates of 88.2%, 87.5%, 86.8%, and 86.8% for MYD35, MVCM Aqua MODIS, MVCM SNPP VIIRS, and MVCM NOAA-20 VIIRS, respectively, for June through until August, 2018. For the same months and in the same order for 60S–60N, hit rates are 90.7%, 90.5%, 90.1%, and 90.3%. From the time series constructed from gridded daily means of 60S–60N cloud fractions, we found that the mean day-to-day cloud fraction differences/standard deviations in percent to be 0.68/0.55, 0.94/0.64, −0.20/0.50, and 0.44/0.82 for MVCM Aqua MODIS-MVCM SNPP VIIRS day and night, and MVCM NOAA-20 VIIRS-MVCM SNPP VIIRS day and night, respectively. It is seen that the MODIS and VIIRS 1.38 µm cirrus detection bands perform similarly but with MODIS detecting slightly more clouds in the middle to high levels of the troposphere and the VIIRS detecting more in the upper troposphere above 16 km. In the Arctic, MVCM Aqua MODIS and SNPP VIIRS reported cloud fraction differences of 0–3% during the mid-summer season and −3–4% during the mid-winter.


2015 ◽  
Vol 54 (5) ◽  
pp. 1009-1020 ◽  
Author(s):  
Ning An ◽  
Kaicun Wang

AbstractClouds determine the amount of solar radiation incident to the surface. Accurately quantifying cloud fraction is of great importance but is difficult to accomplish. Satellite and surface cloud observations have different fields of view (FOVs); the lack of conformity of different FOVs may cause large discrepancies when comparing satellite- and surface-derived cloud fractions. From the viewpoint of surface-incident solar radiation, this paper compares Moderate Resolution Imaging Spectroradiometer (MODIS) level-2 cloud-fraction data with three surface cloud-fraction datasets at five Surface Radiation Network (SURFRAD) sites. The correlation coefficients between MODIS and the surface cloud fractions are in the 0.80–0.91 range and vary at different SURFRAD sites. In a number of cases, MODIS observations show a large cloud-fraction bias when compared with surface data. The variances between MODIS and the surface cloud-fraction datasets are more apparent when small convective or broken clouds exist in the FOVs. The magnitude of the discrepancy between MODIS and surface-derived cloud fractions depends on the satellite’s view zenith angle (VZA). On average, relative to surface cloud-fraction data, MODIS observes a larger cloud fraction at VZA > 40° and a smaller cloud fraction at VZA < 20°. When comparing long-term MODIS averages with surface datasets, Aqua MODIS observes a higher annual mean cloud fraction, likely because convective clouds are better developed in the afternoon when Aqua is observing.


Sign in / Sign up

Export Citation Format

Share Document