Spatiotemporal lightning activity detected by WWLLN over Tibetan Plateau and its comparison with LIS lightning
AbstractHerein, we compared data on the spatiotemporal distribution of lightning activity obtained from the World Wide Lightning Location Network (WWLLN) with that from the Lightning Imaging Sensor (LIS). The WWLLN and LIS both suggest intense lightning activity over the central and southeastern Tibetan Plateau (TP) during May–September. Meanwhile, the WWLLN indicates relatively weak lightning activity over the northeastern TP, where the LIS suggests very intense lightning activity, and it also indicates a high-density lightning center over the southwestern TP, not suggested by the LIS. Furthermore, the WWLLN lightning peaks in August in terms of monthly variation and in late August in terms of ten-day variation, unlike the corresponding LIS lightning peaks of July and late June, respectively. Other observation data were also introduced into the comparison. The black body temperature (TBB) data from the Fengyun-2E geostationary satellite (as a proxy of deep convection) and thunderstorm day data support the spatial distribution of the WWLLN lightning more. Meanwhile, for seasonal variation, the TBB data is more analogous to the LIS data, while the cloud-to-ground (CG) lightning data from a local CG lightning location system is closer to the WWLLN data. It is speculated that the different WWLLN and LIS observation modes may cause their data to represent different dominant types of lightning, thereby leading to differences in the spatiotemporal distributions of their data. The results may further imply that there exist regional differences and seasonal variations in the electrical properties of thunderstorms over the TP.