Spatiotemporal lightning activity detected by WWLLN over Tibetan Plateau and its comparison with LIS lightning

Author(s):  
Ruiyang Ma ◽  
Dong Zheng ◽  
Yijun Zhang ◽  
Wen Yao ◽  
Wenjuan Zhang ◽  
...  

AbstractHerein, we compared data on the spatiotemporal distribution of lightning activity obtained from the World Wide Lightning Location Network (WWLLN) with that from the Lightning Imaging Sensor (LIS). The WWLLN and LIS both suggest intense lightning activity over the central and southeastern Tibetan Plateau (TP) during May–September. Meanwhile, the WWLLN indicates relatively weak lightning activity over the northeastern TP, where the LIS suggests very intense lightning activity, and it also indicates a high-density lightning center over the southwestern TP, not suggested by the LIS. Furthermore, the WWLLN lightning peaks in August in terms of monthly variation and in late August in terms of ten-day variation, unlike the corresponding LIS lightning peaks of July and late June, respectively. Other observation data were also introduced into the comparison. The black body temperature (TBB) data from the Fengyun-2E geostationary satellite (as a proxy of deep convection) and thunderstorm day data support the spatial distribution of the WWLLN lightning more. Meanwhile, for seasonal variation, the TBB data is more analogous to the LIS data, while the cloud-to-ground (CG) lightning data from a local CG lightning location system is closer to the WWLLN data. It is speculated that the different WWLLN and LIS observation modes may cause their data to represent different dominant types of lightning, thereby leading to differences in the spatiotemporal distributions of their data. The results may further imply that there exist regional differences and seasonal variations in the electrical properties of thunderstorms over the TP.

2016 ◽  
Vol 16 (2) ◽  
pp. 607-616 ◽  
Author(s):  
Dieter Roel Poelman ◽  
Wolfgang Schulz ◽  
Gerhard Diendorfer ◽  
Marina Bernardi

Abstract. Cloud-to-ground (CG) lightning data from the European Cooperation for Lightning Detection (EUCLID) network over the period 2006–2014 are explored. Mean CG flash densities vary over the European continent, with the highest density of about 6 km−2 yr−1 found at the intersection of the borders between Austria, Italy and Slovenia. The majority of lightning activity takes place between May and September, accounting for 85 % of the total observed CG activity. Furthermore, the thunderstorm season reaches its highest activity in July, while the diurnal cycle peaks around 15:00 UTC. A difference between CG flashes over land and sea becomes apparent when looking at the peak current estimates. It is found that flashes with higher peak currents occur in greater proportion over sea than over land.


2015 ◽  
Vol 3 (9) ◽  
pp. 5357-5381 ◽  
Author(s):  
D. R. Poelman ◽  
W. Schulz ◽  
G. Diendorfer ◽  
M. Bernardi

Abstract. Cloud-to-ground (CG) lightning data from the European Cooperation for Lightning Detection (EUCLID) network over the period 2006–2014 are explored. Mean CG flash densities vary over the European continent, with the highest density of about 6 km−2 yr−1 found at the triple point between Austria, Italy and Slovenia. The majority of lightning activity takes place between May and September, accounting for 85 % of the total observed CG activity. Furthermore, the thunderstorm season reaches its highest activity in July, while the diurnal cycle peaks around 15:00 UTC. A difference between CG flashes over land and sea becomes apparent when looking at the peak current estimates. It is found that flashes with higher peak currents occur in greater numbers over sea than over land.


2020 ◽  
Vol 20 (21) ◽  
pp. 13379-13397
Author(s):  
Pengguo Zhao ◽  
Zhanqing Li ◽  
Hui Xiao ◽  
Fang Wu ◽  
Youtong Zheng ◽  
...  

Abstract. The joint effects of aerosol, thermodynamic, and cloud-related factors on cloud-to-ground lightning in Sichuan were investigated by a comprehensive analysis of ground-based measurements made from 2005 to 2017 in combination with reanalysis data. Data include aerosol optical depth, cloud-to-ground (CG) lightning density, convective available potential energy (CAPE), mid-level relative humidity, lower- to mid-tropospheric vertical wind shear, cloud-base height, total column liquid water (TCLW), and total column ice water (TCIW). Results show that CG lightning density and aerosols are positively correlated in the plateau region and negatively correlated in the basin region. Sulfate aerosols are found to be more strongly associated with lightning than total aerosols, so this study focuses on the role of sulfate aerosols in lightning activity. In the plateau region, the lower aerosol concentration stimulates lightning activity through microphysical effects. Increasing the aerosol loading decreases the cloud droplet size, reducing the cloud droplet collision–coalescence efficiency and inhibiting the warm-rain process. More small cloud droplets are transported above the freezing level to participate in the freezing process, forming more ice particles and releasing more latent heat during the freezing process. Thus, an increase in the aerosol loading increases CAPE, TCLW, and TCIW, stimulating CG lightning in the plateau region. In the basin region, by contrast, the higher concentration of aerosols inhibits lightning activity through the radiative effect. An increase in the aerosol loading reduces the amount of solar radiation reaching the ground, thereby lowering the CAPE. The intensity of convection decreases, resulting in less supercooled water being transported to the freezing level and fewer ice particles forming, thereby increasing the total liquid water content. Thus, an increase in the aerosol loading suppresses the intensity of convective activity and CG lightning in the basin region.


2009 ◽  
Vol 6 (6) ◽  
pp. 10849-10881
Author(s):  
J. Hong ◽  
J. Kim

Abstract. The Tibetan Plateau is a critical region in the research of biosphere-atmosphere interactions on both regional and global scales due to its relation to Asian summer monsoon and El Niño. The unique environment on the Plateau provides valuable information for the evaluation of the models' surface energy partitioning associated with the summer monsoon. In this study, we investigated the surface energy partitioning on this important area through comparative analysis of two biosphere models constrained by the in-situ observation data. Indeed, the characteristics of the Plateau provide a unique opportunity to clarify the structural deficiencies of biosphere models as well as new insight into the surface energy partitioning on the Plateau. Our analysis showed that the observed inconsistency between the two biosphere models was mainly related to: 1) the parameterization for soil evaporation; 2) the way to deal with roughness lengths of momentum and scalars; and 3) the parameterization of subgrid velocity scale for aerodynamic conductance. Our study demonstrates that one should carefully interpret the modeling results on the Plateau especially during the pre-monsoon period.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243198
Author(s):  
Yanjing Yang ◽  
Yun Deng ◽  
Youcai Tuo ◽  
Jia Li ◽  
Tianfu He ◽  
...  

The Qinghai-Tibetan Plateau region has unique meteorological characteristics, with low air temperature, low air pressure, low humidity, little precipitation, and strong diurnal variation. A two-dimensional hydrodynamic CE-QUAL-W2 model was configured for the Pangduo Reservoir to better understand the thermal structure and diurnal variation inside the reservoir under the local climate and hydrological conditions on the Qinghai-Tibetan Plateau. Observation data were used to verify the model, and the results showed that the average error of the 6 profile measured monthly from August to December 2016 was 0.1°C, and the root-mean-square error (RMSE) was 0.173°C. The water temperature from August 2016 to September 2017 was simulated by inputting measured data as model inputs. The results revealed that the reservoir of the Qinghai-Tibetan Plateau was a typical dimictic reservoir and the water mixed vertically at the end of March and the end of October. During the heating period, thermal stratification occurred, with strong diurnal variation in the epilimnion. The mean variance of the diurnal water temperature was 0.10 within a 5 m water depth but 0.04 in the whole water column. The mixing mode of inflow changed from undercurrent, horizontal-invaded flow and surface layer flow in one day. In winter, the diurnal variation was weak due to the thermal protection of the ice cover, while the mean variance of diurnal water temperature was 0.00 within both 5 m and the whole water column. Compared to reservoirs in areas with low altitude but the same latitude, significant differences occurred between the temperature structure of the low-altitude reservoir and the Pangduo Reservoir (P<0.01). The Pangduo Reservoir presented a shorter stratification period and weaker stratification stability, and the annual average SI value was 26.4 kg/m2, which was only 7.5% that of the low-altitude reservoir. The seasonal changes in the net heat flux received by the surface layers determined the seasonal cycle of stratification and mixing in reservoirs. This study provided a scientific understanding of the thermal changes in stratified reservoirs under the special geographical and meteorological conditions on the Qinghai-Tibetan Plateau. Moreover, this model can serve as a reference for adaptive management of similar dimictic reservoirs in cold and high-altitude areas.


2021 ◽  
Author(s):  
Wuqi Han ◽  
Dandan Zhang ◽  
Hailong Zhao ◽  
Shixun Wei ◽  
Songling Pang ◽  
...  

2014 ◽  
Vol 53 (12) ◽  
pp. 2651-2670 ◽  
Author(s):  
Laura Feudale ◽  
Agostino Manzato

AbstractThe main object of this work is to study the lightning climatology in the Po Valley in Italy and how it varies in time (interannual, annual, weekly, and daily time scales) and space (sea coast, plains, and mountain areas) and how that is related to topographic characteristics and anthropogenic emissions. Cloud-to-ground (CG) lightning in the target area is analyzed for 18 yr of data (about 7 million records). It is found that the Julian Prealps of the Friuli Venezia Giulia region are one of the areas of maximum CG lightning activity across all of Europe. During spring lightning activity is more confined toward the mountainous regions, whereas during summer and even more during autumn the lightning activity involves also the coastal region and the Adriatic Sea. This is due to different triggering mechanisms acting in different topographic zones and during different periods of the year and times of the day. In analogy to previous studies of lightning done in the United States, a weekly cycle is also identified in the area of interest, showing that on Friday the probability of thunderstorms reaches its maximum. After conducting a parallel analysis with monitoring stations of atmospheric particulates (diameter ≤ 10 μm: PM10) and sounding-derived potential instability, the results presented herein seem to support the hypothesis that the weekly cycle in the thunderstorm activity may be due to anthropogenic emissions.


2020 ◽  
Vol 245 ◽  
pp. 105118 ◽  
Author(s):  
Jinliang Li ◽  
Xueke Wu ◽  
Jing Yang ◽  
Rubin Jiang ◽  
Tie Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document