Observing Profiles of Derived Kinematic Field Quantities Using a Network of Profiling Sites

Abstract Observations of thermodynamic and kinematic parameters associated with derivatives of the thermodynamics and wind fields, namely advection, vorticity, divergence, and deformation, can be obtained by applying Green’s Theorem to a network of observing sites. The five nodes that comprise the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) profiling network, spaced 50 -80 km apart, are used to obtain measurements of these parameters over a finite region. To demonstrate the applicability of this technique at this location, it is first applied to gridded model output from the High Resolution Rapid Refresh (HRRR) numerical weather prediction model, using profiles from the locations of ARM network sites, so that values calculated from this method can be directly compared to finite difference calculations. Good agreement is found between both approaches as well as between the model and values calculated from the observations. Uncertainties for the observations are obtained via a Monte Carlo process in which the profiles are randomly perturbed in accordance with their known error characteristics. The existing size of the ARM network is well-suited to capturing these parameters, with strong correlations to model values and smaller uncertainties than a more closely-spaced network, yet it is small enough that it avoids the tendency for advection to go to zero over a large area.

2011 ◽  
Vol 4 (7) ◽  
pp. 1463-1470 ◽  
Author(s):  
E. Kassianov ◽  
J. C. Barnard ◽  
L. K. Berg ◽  
C. Flynn ◽  
C. N. Long

Abstract. The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their modeled clear-sky counterparts are the main components of a new method for estimating the fractional sky cover of different cloud types, including cumuli. The performance of this method is illustrated using 1-min resolution data from a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR). The MFRSR data are collected at the US Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during the summer of 2007 and represent 13 days with cumuli. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.


2011 ◽  
Vol 4 (1) ◽  
pp. 715-735 ◽  
Author(s):  
E. Kassianov ◽  
J. Barnard ◽  
L. K. Berg ◽  
C. Flynn ◽  
C. N. Long

Abstract. The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their model clear-sky counterparts are two main components of a new method for estimating the fractional sky cover of different cloud types, including cumulus clouds. The performance of this method is illustrated using 1-min resolution data from ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR). The MFRSR data are collected at the US Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during the summer of 2007 and represent 13 days with cumulus clouds. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.


2012 ◽  
Vol 12 (2) ◽  
pp. 6283-6329 ◽  
Author(s):  
S. S. Kulawik ◽  
J. R. Worden ◽  
S. C. Wofsy ◽  
S. C. Biraud ◽  
R. Nassar ◽  
...  

Abstract. Comparisons are made between mid-tropospheric Tropospheric Emission Spectrometer (TES) carbon dioxide (CO2) satellite measurements and ocean profiles from three Hiaper Pole-to-Pole Observations (HIPPO) campaigns and land aircraft profiles from the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site over a 4-yr period. These comparisons are used to characterize the bias in the TES CO2 estimates and to assess whether calculated and actual uncertainties and sensitivities are consistent. The HIPPO dataset is one of the few datasets spanning the altitude range where TES CO2 estimates are sensitive, which is especially important for characterization of biases. We find that TES CO2 estimates capture the seasonal and latitudinal gradients observed by HIPPO CO2 measurements; actual errors range from 0.8–1.2 ppm, depending on the campaign, and are approximately 1.4 times larger than the predicted errors. The bias of TES versus HIPPO is within 0.85 ppm for each of the 3 campaigns; however several of the sub-tropical TES CO2 estimates are lower than expected based on the calculated errors. Comparisons of aircraft flask profiles, which are measured from the surface to 5 km, to TES CO2 at the SGP ARM site show good agreement with an overall bias of 0.1 ppm and rms of 1.0 ppm. We also find that the predicted sensitivity of the TES CO2 estimates is too high, which results from using a multi-step retrieval for CO2 and temperature. We find that the averaging kernel in the TES product corrected by a pressure-dependent factor accurately reflects the sensitivity of the TES CO2 product.


2021 ◽  
Vol 14 (4) ◽  
pp. 3033-3048
Author(s):  
David D. Turner ◽  
Ulrich Löhnert

Abstract. Thermodynamic profiles in the planetary boundary layer (PBL) are important observations for a range of atmospheric research and operational needs. These profiles can be retrieved from passively sensed spectral infrared (IR) or microwave (MW) radiance observations or can be more directly measured by active remote sensors such as water vapor differential absorption lidars (DIALs). This paper explores the synergy of combining ground-based IR, MW, and DIAL observations using an optimal-estimation retrieval framework, quantifying the reduction in the uncertainty in the retrieved profiles and the increase in information content as additional observations are added to IR-only and MW-only retrievals. This study uses ground-based observations collected during the Perdigão field campaign in central Portugal in 2017 and during the DIAL demonstration campaign at the Atmospheric Radiation Measurement Southern Great Plains site in 2017. The results show that the information content in both temperature and water vapor is higher for the IR instrument relative to the MW instrument (thereby resulting in smaller uncertainties) and that the combined IR + MW retrieval is very similar to the IR-only retrieval below 1.5 km. However, including the partial profile of water vapor observed by the DIAL increases the information content in the combined IR + DIAL and MW + DIAL water vapor retrievals substantially, with the exact impact vertically depending on the characteristics of the DIAL instrument itself. Furthermore, there is a slight increase in the information content in the retrieved temperature profile using the IR + DIAL relative to the IR-only; this was not observed in the MW + DIAL retrieval.


2005 ◽  
Vol 22 (6) ◽  
pp. 605-627 ◽  
Author(s):  
Robert F. Cahalan ◽  
Matthew McGill ◽  
John Kolasinski ◽  
Tamás Várnai ◽  
Ken Yetzer

Abstract Conventional wisdom is that lidar pulses do not significantly penetrate clouds having an optical thickness exceeding about τ = 2, and that no returns are detectible from more than a shallow skin depth. Yet optically thicker clouds of τ ≫ 2 reflect a larger fraction of visible photons and account for much of the earth’s global average albedo. As cloud-layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FOV) receivers commonly used in lidar applications. Cloud Thickness from Offbeam Returns (THOR) is an airborne wide-angle detection system with multiple FOVs, capable of observing the diffuse halo as a wide-angle signal, from which the physical thickness of optically thick clouds can be retrieved. This paper describes the THOR system, demonstrates that the halo signal is stronger for thicker clouds, and presents a validation of physical thickness retrievals for clouds having τ > 20, from NASA’s P-3B flights over the Department of Energy’s Atmospheric Radiation Measurement Southern Great Plains site, using the lidar, radar, and other ancillary ground-based data.


2020 ◽  
Vol 20 (6) ◽  
pp. 3483-3501 ◽  
Author(s):  
Xiaojian Zheng ◽  
Baike Xi ◽  
Xiquan Dong ◽  
Timothy Logan ◽  
Yuan Wang ◽  
...  

Abstract. The aerosol indirect effect on cloud microphysical and radiative properties is one of the largest uncertainties in climate simulations. In order to investigate the aerosol–cloud interactions, a total of 16 low-level stratus cloud cases under daytime coupled boundary-layer conditions are selected over the southern Great Plains (SGP) region of the United States. The physicochemical properties of aerosols and their impacts on cloud microphysical properties are examined using data collected from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the SGP site. The aerosol–cloud interaction index (ACIr) is used to quantify the aerosol impacts with respect to cloud-droplet effective radius. The mean value of ACIr calculated from all selected samples is 0.145±0.05 and ranges from 0.09 to 0.24 at a range of cloud liquid water paths (LWPs; LWP=20–300 g m−2). The magnitude of ACIr decreases with an increasing LWP, which suggests a diminished cloud microphysical response to aerosol loading, presumably due to enhanced condensational growth processes and enlarged particle sizes. The impact of aerosols with different light-absorbing abilities on the sensitivity of cloud microphysical responses is also investigated. In the presence of weak light-absorbing aerosols, the low-level clouds feature a higher number concentration of cloud condensation nuclei (NCCN) and smaller effective radii (re), while the opposite is true for strong light-absorbing aerosols. Furthermore, the mean activation ratio of aerosols to CCN (NCCN∕Na) for weakly (strongly) absorbing aerosols is 0.54 (0.45), owing to the aerosol microphysical effects, particularly the different aerosol compositions inferred by their absorptive properties. In terms of the sensitivity of cloud-droplet number concentration (Nd) to NCCN, the fraction of CCN that converted to cloud droplets (Nd∕NCCN) for the weakly (strongly) absorptive regime is 0.69 (0.54). The measured ACIr values in the weakly absorptive regime are relatively higher, indicating that clouds have greater microphysical responses to aerosols, owing to the favorable thermodynamic condition. The reduced ACIr values in the strongly absorptive regime are due to the cloud-layer heating effect induced by strong light-absorbing aerosols. Consequently, we expect larger shortwave radiative cooling effects from clouds in the weakly absorptive regime than those in the strongly absorptive regime.


Sign in / Sign up

Export Citation Format

Share Document