A Large-Eddy Simulation Study of Moist Convection Initiation over Heterogeneous Surface Fluxes

2011 ◽  
Vol 139 (9) ◽  
pp. 2901-2917 ◽  
Author(s):  
Song-Lak Kang ◽  
George H. Bryan

This study uses large-eddy simulations to investigate processes of moist convection initiation (CI) over heterogeneous surface fluxes. Surface energy balance is imposed via a 180° phase lag of the surface moisture flux (relative to the sensible heat flux), such that the relatively warm surface is relatively dry (and the relatively cool surface is relatively wet). As shown in previous simulations, a mesoscale circulation forms in the presence of surface-flux heterogeneity, which coexists with turbulent fluctuations. The mesoscale convergence zone of this circulation develops over the relatively warm surface, and this is where clouds first form. Convection initiation occurs sooner as the amplitude of the heterogeneity increases, and as the surface moisture increases (i.e., Bowen ratio decreases). Shallow clouds initiate when boundary layer heights (zi) become greater than the lifting condensation level (LCL). Deep precipitating clouds initiate when the LCL and level of free convection (LFC) are roughly the same when averaged over the relatively warm surface, which is equivalent to the mean convective inhibition (CIN) becoming nearly zero. From the perspective of the entire (mesoscale) domain, cases with strongly heterogeneous surfaces have a wider distribution of both zi and LCL. Thus, a comparison of zi with LCL over a mesoscale area (i.e., within one mesoscale model grid box) may lead to misleading conclusions about CI and cloud-base height. It is also shown that as the amplitude of the surface-flux heterogeneity increases the mesoscale convergence zone becomes narrower and stronger. Furthermore, CI occurs earlier over relatively wet surfaces partly because turbulent eddies are more vigorous owing to slightly greater buoyancy.

2018 ◽  
Vol 75 (11) ◽  
pp. 3911-3924 ◽  
Author(s):  
Daniel Hernandez-Deckers ◽  
Steven C. Sherwood

Abstract Mixing is one of the most important processes associated with atmospheric moist convection. It determines the two-way interaction between clouds and their environment, thus having a direct impact on the time evolution of convection. The fractional entrainment rate ε—the main parameter related to mixing—is often parameterized in global circulation models as a function of updraft properties, and at the same time has a strong influence on how convection evolves. Within the framework of cumulus thermal vortices in large-eddy simulations of convection, here we first investigate the validity of some of the most common parameterizations of ε, and then investigate how relevant ε is for the fate of these thermals. We find that 1/R, where R is a measure of the thermal’s radius, best parameterizes ε, but it explains only about 20% of the total variance. On the other hand, we find that both ε and favorable initial conditions—including high initial saturated fraction of the thermals—are key factors that affect the thermals’ ascent rate, mean buoyancy, and distance traveled. The lifetimes of thermals, however, seem not to be affected significantly by either ε or initial conditions, which supports the view of cumulus convection as a succession of many short-lived thermals. Finally, our results suggest that for the majority of in-cloud cumulus thermals the important role of environmental moisture in the deepening of convection results mainly from providing the initial moisture for the short-lived thermals as they initiate at different altitudes above cloud base, rather than favoring their buoyancy as they rise through it.


2020 ◽  
Author(s):  
Louise Nuijens ◽  
Irina Sandu ◽  
Beatrice Saggiorato ◽  
Hauke Schulz ◽  
Mariska Koning ◽  
...  

<p>Despite playing a key role in the atmospheric circulation, the representation of momentum transport by moist convection (cumulus clouds) has been largely overlooked by the model development community over the past decade, at least compared with diabatic and radiative effects of clouds. In particular, how shallow convection may influence surface and boundary layer winds is not thoroughly investigated. In this talk, we discuss the role of convective momentum transport (CMT) in setting low-level wind speed and its variability and evaluate its role in long-standing wind biases in the ECMWF IFS model.</p><p>We use high-frequency wind profiling measurements and high-resolution large-eddy simulations to inform our understanding of convectively driven wind variability. We do this at two locations: in the trades, using wind lidar and radiosonde measurements from the Barbados Cloud Observatory and the intensive EUREC4A field campaign, and over the Netherlands, using an observationally constrained reanalysis wind dataset and large-eddy simulation hindcasts.</p><p>At both locations we use the data and model output to investigate whether CMT can be responsible for a missing drag near the surface in the IFS model. Namely, at short leadtimes, the model produces stronger than observed easterly/westerly flow near the surface, while “a missing drag” produces weaker than observed wind turning. Consequently, the meridional overturning circulation in both the tropics and midlatitudes is weaker in the IFS and in ERA-Interim and ERA5 reanalysis products.</p><p>Comparing simulated and IFS wind tendencies at selected grid points at the above locations, and by turning off the process of CMT by shallow convection in the model, we gain insight in the role of CMT in explaining wind biases. We find that CMT alone does not explain a missing drag near the surface. CMT often acts to accelerate winds near the surface. But CMT plays a role in communicating biases in cloud base wind speeds towards the surface. In the trades, a strong jet near cloud base is determined by thermal wind and a strong flux of zonal momentum through cloud base, where “cumulus friction” minimizes. Near this jet, the presence of (counter-gradient) turbulent momentum fluxes produces most of the drag. Implications of these findings for CMT parameterization are discussed.</p>


2016 ◽  
Vol 73 (10) ◽  
pp. 4021-4041 ◽  
Author(s):  
Davide Panosetti ◽  
Steven Böing ◽  
Linda Schlemmer ◽  
Jürg Schmidli

Abstract On summertime fair-weather days, thermally driven wind systems play an important role in determining the initiation of convection and the occurrence of localized precipitation episodes over mountainous terrain. This study compares the mechanisms of convection initiation and precipitation development within a thermally driven flow over an idealized double-ridge system in large-eddy (LESs) and convection-resolving (CRM) simulations. First, LES at a horizontal grid spacing of 200 m is employed to analyze the developing circulations and associated clouds and precipitation. Second, CRM simulations at horizontal grid length of 1 km are conducted to evaluate the performance of a kilometer-scale model in reproducing the discussed mechanisms. Mass convergence and a weaker inhibition over the two ridges flanking the valley combine with water vapor advection by upslope winds to initiate deep convection. In the CRM simulations, the spatial distribution of clouds and precipitation is generally well captured. However, if the mountains are high enough to force the thermally driven flow into an elevated mixed layer, the transition to deep convection occurs faster, precipitation is generated earlier, and surface rainfall rates are higher compared to the LES. Vertical turbulent fluxes remain largely unresolved in the CRM simulations and are underestimated by the model, leading to stronger upslope winds and increased horizontal moisture advection toward the mountain summits. The choice of the turbulence scheme and the employment of a shallow convection parameterization in the CRM simulations change the strength of the upslope winds, thereby influencing the simulated timing and intensity of convective precipitation.


2016 ◽  
Vol 73 (7) ◽  
pp. 2665-2682 ◽  
Author(s):  
David H. Richter ◽  
Rachel Bohac ◽  
Daniel P. Stern

Abstract An analysis of the reliability of using dropsonde profile data to compute surface flux coefficients of momentum and heat is performed. Monin–Obukhov (MO) similarity theory forms the basis for the flux profile method, where mean profiles of momentum, temperature, and moisture are used to estimate surface fluxes, from which bulk flux coefficients can then be determined given surface conditions. The robustness of this method is studied in terms of its sensitivity to internal, method-based parameters, as well as the uncertainty due to variability in the measurements and errors in the estimates of surface conditions, particularly sea surface temperature. In addition, “virtual sondes” tracked through a high-resolution large-eddy simulation of an idealized tropical cyclone are used to evaluate the flux profile method’s ability to recover known surface flux coefficients given known, prescribed surface conditions; this provides a test of whether or not MO assumptions are violated and under which regions they hold. Overall, it is determined that the flux profile method is only accurate within 50% and 200% for the drag coefficient CD and enthalpy flux coefficient CK, respectively, and thus is limited in its ability to quantitatively refine model estimates beyond typically used values. Factors such as proximity to the storm center can cause significant errors in both CD and CK.


2018 ◽  
Vol 75 (12) ◽  
pp. 4071-4090 ◽  
Author(s):  
Marcin J. Kurowski ◽  
Kay Suselj ◽  
Wojciech W. Grabowski ◽  
Joao Teixeira

Abstract Large-eddy simulation is used to investigate the effects of cold pools driven by rain evaporation on the shallow-to-deep convection transition over land. The physically consistent methodologies are developed to obtain a time-dependent reference ensemble without cold pools and to apply interactive surface heat fluxes without modeling of surface energy and water budgets. Three different simulation ensembles are contrasted. The reference ensemble, in the spirit of one-dimensional single-column models, eliminates cold pools by horizontally homogenizing negative buoyancy production due to rain evaporation. The additional ensembles complement the reference cold-pool-free ensemble by including cold pools and by applying either interactive or prescribed surface fluxes. Contrasting these ensembles suggests possible improvements of convection parameterization in large-scale models of weather and climate. Without cold pools, the reference ensemble preserves key features of buoyancy-driven cellular convection associated with a field of convective plumes, as assumed in a typical convection parameterization. With cold pools, a significant enhancement of surface heat and moisture fluxes and about an hour delay of their daily maximum is simulated. Cold pools enhance near-surface temperature and moisture standard deviations as well as maxima of the near-surface updraft velocity. They also lead to the reduction of cloud lateral entrainment, deeper vertical development of the cloud layer, and a few-times-larger accumulated surface precipitation. Interactive surface fluxes provide a damping mechanism that noticeably suppresses all these effects. Perhaps surprisingly, cold pools do not significantly change the cloud-base convective mass flux that approximately follows the evolution of surface heat fluxes.


2016 ◽  
Vol 144 (2) ◽  
pp. 681-701 ◽  
Author(s):  
Virendra P. Ghate ◽  
Mark A. Miller ◽  
Ping Zhu

Abstract Marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%–70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s−1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures.


2015 ◽  
Vol 32 (6) ◽  
pp. 1144-1162 ◽  
Author(s):  
Adrian Sescu ◽  
Charles Meneveau

AbstractEffects of atmospheric thermal stratification on the asymptotic behavior of very large wind farms are studied using large-eddy simulations (LES) and a single-column model for vertical distributions of horizontally averaged field variables. To facilitate comparisons between LES and column modeling based on Monin–Obukhov similarity theory, the LES are performed under idealized conditions of statistical stationarity in time and fully developed conditions in space. A suite of simulations are performed for different thermal stratification levels and the results are used to evaluate horizontally averaged vertical profiles of velocity, potential temperature, vertical turbulent momentum, and heat flux. Both LES and the model show that the stratification significantly affects the atmospheric boundary layer structure, its height, and the surface fluxes. However, the effects of the wind farm on surface heat fluxes are found to be relatively small in both LES and the single-column model. The surface fluxes are the result of two opposing trends: an increase of mixing in wakes and a decrease in mixing in the region below the turbines due to reduced momentum fluxes there for neutral and unstable cases, or relatively unchanged shear stresses below the turbines in the stable cases. For the considered cases, the balance of these trends yields a slight increase in surface flux magnitude for the stable and near-neutral unstable cases, and a very small decrease in flux magnitude for the strongly unstable cases. Moreover, thermal stratification is found to have a negligible effect on the roughness scale as deduced from the single-column model, consistent with the expectations of separation of scale.


2009 ◽  
Vol 137 (3) ◽  
pp. 1083-1110 ◽  
Author(s):  
Andrew S. Ackerman ◽  
Margreet C. vanZanten ◽  
Bjorn Stevens ◽  
Verica Savic-Jovcic ◽  
Christopher S. Bretherton ◽  
...  

Abstract Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


2018 ◽  
Vol 146 (1) ◽  
pp. 243-262 ◽  
Author(s):  
J. W. Wilson ◽  
S. B. Trier ◽  
D. W. Reif ◽  
R. D. Roberts ◽  
T. M. Weckwerth

AbstractDuring the Plains Elevated Convection at Night (PECAN) experiment, an isolated hailstorm developed on the western side of the PECAN study area on the night of 3–4 July 2015. One of the objectives of PECAN was to advance knowledge of the processes and conditions leading to pristine nocturnal convection initiation (CI). This nocturnal hailstorm developed more than 160 km from any other convective storms and in the absence of any surface fronts or bores. The storm initiated within 110 km of the S-Pol radar; directly over a vertically pointing Doppler lidar; within 25 km of the University of Wyoming King Air flight track; within a network of nine sounding sites taking 2-hourly soundings; and near a mobile mesonet track. Importantly, even beyond 100 km in range, S-Pol observed the preconvection initiation cloud that was collocated with the satellite infrared cloud image and provided information on the evolution of cloud growth. The multiple observations of cloud base, thermodynamic stability, and direct updraft observations were used to determine that the updraft roots were elevated. Diagnostic analysis presented in the paper suggests that CI was aided by lower-tropospheric gravity waves occurring in an environment of weak but persistent mesoscale lifting.


2017 ◽  
Vol 74 (4) ◽  
pp. 1149-1168 ◽  
Author(s):  
Simon P. de Szoeke ◽  
Eric D. Skyllingstad ◽  
Paquita Zuidema ◽  
Arunchandra S. Chandra

Abstract Cold pools dominate the surface temperature variability observed over the central Indian Ocean (0°, 80°E) for 2 months of research cruise observations in the Dynamics of the Madden–Julian Oscillation (DYNAMO) experiment in October–December 2011. Cold pool fronts are identified by a rapid drop of temperature. Air in cold pools is slightly drier than the boundary layer (BL). Consistent with previous studies, cold pools attain wet-bulb potential temperatures representative of saturated downdrafts originating from the lower midtroposphere. Wind and surface fluxes increase, and rain is most likely within the ~20-min cold pool front. Greatest integrated water vapor and liquid follow the front. Temperature and velocity fluctuations shorter than 6 min achieve 90% of the surface latent and sensible heat flux in cold pools. The temperature of the cold pools recovers in about 20 min, chiefly by mixing at the top of the shallow cold wake layer, rather than by surface flux. Analysis of conserved variables shows mean BL air is composed of 51% air entrained from the BL top (800 m), 22% saturated downdrafts, and 27% air at equilibrium with the ocean surface. The number of cold pools, and their contribution to the BL heat and moisture, nearly doubles in the convectively active phase compared to the suppressed phase of the Madden–Julian oscillation.


Sign in / Sign up

Export Citation Format

Share Document