Impact of CASA Radar and Oklahoma Mesonet Data Assimilation on the Analysis and Prediction of Tornadic Mesovortices in an MCS

2011 ◽  
Vol 139 (11) ◽  
pp. 3422-3445 ◽  
Author(s):  
Alexander D. Schenkman ◽  
Ming Xue ◽  
Alan Shapiro ◽  
Keith Brewster ◽  
Jidong Gao

Abstract The impact of radar and Oklahoma Mesonet data assimilation on the prediction of mesovortices in a tornadic mesoscale convective system (MCS) is examined. The radar data come from the operational Weather Surveillance Radar-1988 Doppler (WSR-88D) and the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere’s (CASA) IP-1 radar network. The Advanced Regional Prediction System (ARPS) model is employed to perform high-resolution predictions of an MCS and the associated cyclonic line-end vortex that spawned several tornadoes in central Oklahoma on 8–9 May 2007, while the ARPS three-dimensional variational data assimilation (3DVAR) system in combination with a complex cloud analysis package is used for the data analysis. A set of data assimilation and prediction experiments are performed on a 400-m resolution grid nested inside a 2-km grid, to examine the impact of radar data on the prediction of meso-γ-scale vortices (mesovortices). An 80-min assimilation window is used in radar data assimilation experiments. An additional set of experiments examines the impact of assimilating 5-min data from the Oklahoma Mesonet in addition to the radar data. Qualitative comparison with observations shows highly accurate forecasts of mesovortices up to 80 min in advance of their genesis are obtained when the low-level shear in advance of the gust front is effectively analyzed. Accurate analysis of the low-level shear profile relies on assimilating high-resolution low-level wind information. The most accurate analysis (and resulting prediction) is obtained in experiments that assimilate low-level radial velocity data from the CASA radars. Assimilation of 5-min observations from the Oklahoma Mesonet has a substantial positive impact on the analysis and forecast when high-resolution low-level wind observations from CASA are absent; when the low-level CASA wind data are assimilated, the impact of Mesonet data is smaller. Experiments that do not assimilate low-level wind data from CASA radars are unable to accurately resolve the low-level shear profile and gust front structure, precluding accurate prediction of mesovortex development.

2016 ◽  
Vol 144 (10) ◽  
pp. 3631-3649 ◽  
Author(s):  
Andrew B. Penny ◽  
Joshua P. Hacker ◽  
Patrick A. Harr

A nondeveloping tropical disturbance, identified as TCS025, was observed during three intensive observing periods during The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC)/Tropical Cyclone Structure-2008 (TCS-08) field experiment. The low-level circulation of the disturbance was relatively weak, asymmetric, and displaced a considerable distance from the midlevel circulation. An ensemble of high-resolution numerical simulations initialized from global model analyses was used to further examine TCS025. These simulations tended to unrealistically overdevelop the TCS025 disturbance. This study extends that work by examining the impact of assimilating in situ observations of TCS025 and dual-Doppler radial velocities from the airborne Electra Doppler Radar (ELDORA) using the Data Assimilation Research Testbed (DART) ensemble data assimilation system. The assimilation of observations results in a more accurate vortex structure that is consistent with the observational analysis. In addition, forecasts initialized from the state of the ensemble after data assimilation exhibit less development than both the control simulation and an ensemble of forecasts without prior data assimilation. A composite analysis of developing and nondeveloping forecasts from the ensemble reveals that convection was more active in developing simulations, especially near the low-level circulation center. This led to larger diabatic heating rates, spinup of the low-level circulation from vorticity stretching, and greater alignment of the low- and midlevel vorticity centers. In contrast, nondeveloping simulations exhibited less convection, and the circulation was more heavily impacted by vertical wind shear.


2008 ◽  
Vol 23 (3) ◽  
pp. 373-391 ◽  
Author(s):  
Qingyun Zhao ◽  
John Cook ◽  
Qin Xu ◽  
Paul R. Harasti

Abstract A high-resolution data assimilation system is under development at the Naval Research Laboratory (NRL). The objective of this development is to assimilate high-resolution data, especially those from Doppler radars, into the U.S. Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System to improve the model’s capability and accuracy in short-term (0–6 h) prediction of hazardous weather for nowcasting. A variational approach is used in this system to assimilate the radar observations into the model. The system is upgraded in this study with new capabilities to assimilate not only the radar radial-wind data but also reflectivity data. Two storm cases are selected to test the upgraded system and to study the impact of radar data assimilation on model forecasts. Results from the data assimilation experiments show significant improvements in storm prediction especially when both radar radial-wind and reflectivity observations are assimilated and the analysis incremental fields are adequately constrained by the model’s dynamics and properly adjusted to satisfy the model’s thermodynamical balance.


2006 ◽  
Vol 21 (4) ◽  
pp. 502-522 ◽  
Author(s):  
Qingyun Zhao ◽  
John Cook ◽  
Qin Xu ◽  
Paul R. Harasti

Abstract A high-resolution radar data assimilation system is presented for high-resolution numerical weather prediction models. The system is under development at the Naval Research Laboratory for the Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System. A variational approach is used to retrieve three-dimensional dynamical fields of atmospheric conditions from multiple-Doppler radar observations of radial velocity within a limited area. The methodology is described along with a preliminary evaluation of the impact of assimilated radar data on model forecasts using a case study of a squall line that occurred along the east coast of the United States on 9 May 2003. Results from the experiments show a significant impact from the assimilated radar radial velocity data on the model forecast of not just dynamical but also hydrological fields at all model levels for the duration of the storm. A verification system has also been developed to assess the radar data assimilation impact, and the results show improvements in the three-dimensional wind forecasts but relatively small changes in the prediction of storm locations. This study highlights the need to develop a continuous radar data assimilation system to maximize the impact of the data.


2008 ◽  
Vol 23 (1) ◽  
pp. 62-79 ◽  
Author(s):  
Zhaoxia Pu ◽  
Xuanli Li ◽  
Christopher S. Velden ◽  
Sim D. Aberson ◽  
W. Timothy Liu

Abstract Dropwindsonde, Geostationary Operational Environmental Satellite-11 (GOES-11) rapid-scan atmospheric motion vectors, and NASA Quick Scatterometer (QuikSCAT) near-surface wind data collected during NASA’s Tropical Cloud Systems and Processes (TCSP) field experiment in July 2005 were assimilated into an advanced research version of the Weather Research and Forecasting (WRF) model using its three-dimensional variational data assimilation (3DVAR) system. The impacts of the mesoscale data assimilation on WRF numerical simulation of Tropical Storms Cindy and Gert (2005) near landfall are examined. Sensitivity of the forecasts to the assimilation of each single data type is investigated. Specifically, different 3DVAR strategies with different analysis update cycles and resolutions are compared in order to identify the better methodology for assimilating the data from research aircraft and satellite for tropical cyclone study. The results presented herein indicate the following. 1) Assimilation of dropwindsonde and satellite wind data into the WRF model improves the forecasts of the two tropical storms up to the landfall time. The QuikSCAT wind information is very important for improving the storm track forecast, whereas the dropwindsonde and GOES-11 wind data are also necessary for improved forecasts of intensity and precipitation. 2) Data assimilation also improves the quantitative precipitation forecasts (QPFs) near landfall of the tropical storms. 3) A 1-h rapid-update analysis cycle at high resolution (9 km) provides more accurate tropical cyclone forecasts than a regular 6-h analysis cycle at coarse (27 km) resolution. The high-resolution rapidly updated 3DVAR analysis cycle might be a practical way to assimilate the data collected from tropical cyclone field experiments.


2008 ◽  
Vol 136 (7) ◽  
pp. 2364-2388 ◽  
Author(s):  
Juanzhen Sun ◽  
Ying Zhang

Abstract This paper presents a case study on the assimilation of observations from multiple Doppler radars of the Next Generation Weather Radar (NEXRAD) network. A squall-line case documented during the International H2O Project (IHOP_2002) is used for the study. Radar radial velocity and reflectivity observations from four NEXRADs are assimilated into a convection-permitting model using a four-dimensional variational data assimilation (4DVAR) scheme. A mesoscale analysis using a supplementary sounding, velocity–azimuth display (VAD) profiles, and surface observations from Meteorological Aerodrome Reports (METAR) are produced and used to provide a background and boundary conditions for the 4DVAR radar data assimilation. Impact of the radar data assimilation is assessed by verifying the skill of the subsequent very short-term (5 h) forecasts. Assimilation and forecasting experiments are conducted to examine the impact of radar data assimilation on the subsequent precipitation forecasts. It is found that the 4DVAR radar data assimilation significantly reduces the model spinup required in the experiments without radar data assimilation, resulting in significantly improved 5-h forecasts. Additional experiments are conducted to study the sensitivity of the precipitation forecasts with respect to 4DVAR cycling configurations. Results from these experiments suggest that the forecasts with three 4DVAR cycles are improved over those with cold start, but the cycling impact seems to diminish with more cycles. The impact of observations from each of the individual radars is also examined by conducting a set of experiments in which data from each radar are alternately excluded. It is found that the accurate analysis of the environmental wind surrounding the convective cells is important in successfully predicting the squall line.


2019 ◽  
Vol 148 (1) ◽  
pp. 63-81 ◽  
Author(s):  
Kevin Bachmann ◽  
Christian Keil ◽  
George C. Craig ◽  
Martin Weissmann ◽  
Christian A. Welzbacher

Abstract We investigate the practical predictability limits of deep convection in a state-of-the-art, high-resolution, limited-area ensemble prediction system. A combination of sophisticated predictability measures, namely, believable and decorrelation scale, are applied to determine the predictable scales of short-term forecasts in a hierarchy of model configurations. First, we consider an idealized perfect model setup that includes both small-scale and synoptic-scale perturbations. We find increased predictability in the presence of orography and a strongly beneficial impact of radar data assimilation, which extends the forecast horizon by up to 6 h. Second, we examine realistic COSMO-KENDA simulations, including assimilation of radar and conventional data and a representation of model errors, for a convectively active two-week summer period over Germany. The results confirm increased predictability in orographic regions. We find that both latent heat nudging and ensemble Kalman filter assimilation of radar data lead to increased forecast skill, but the impact is smaller than in the idealized experiments. This highlights the need to assimilate spatially and temporally dense data, but also indicates room for further improvement. Finally, the examination of operational COSMO-DE-EPS ensemble forecasts for three summer periods confirms the beneficial impact of orography in a statistical sense and also reveals increased predictability in weather regimes controlled by synoptic forcing, as defined by the convective adjustment time scale.


2008 ◽  
Vol 136 (3) ◽  
pp. 945-963 ◽  
Author(s):  
Jidong Gao ◽  
Ming Xue

Abstract A new efficient dual-resolution (DR) data assimilation algorithm is developed based on the ensemble Kalman filter (EnKF) method and tested using simulated radar radial velocity data for a supercell storm. Radar observations are assimilated on both high-resolution and lower-resolution grids using the EnKF algorithm with flow-dependent background error covariances estimated from the lower-resolution ensemble. It is shown that the flow-dependent and dynamically evolved background error covariances thus estimated are effective in producing quality analyses on the high-resolution grid. The DR method has the advantage of being able to significantly reduce the computational cost of the EnKF analysis. In the system, the lower-resolution ensemble provides the flow-dependent background error covariance, while the single-high-resolution forecast and analysis provides the benefit of higher resolution, which is important for resolving the internal structures of thunderstorms. The relative smoothness of the covariance obtained from the lower 4-km-resolution ensemble does not appear to significantly degrade the quality of analysis. This is because the cross covariance among different variables is of first-order importance for “retrieving” unobserved variables from the radar radial velocity data. For the DR analysis, an ensemble size of 40 appears to be a reasonable choice with the use of a 4-km horizontal resolution in the ensemble and a 1-km resolution in the high-resolution analysis. Several sensitivity tests show that the DR EnKF system is quite robust to different observation errors. A 4-km thinned data resolution is a compromise that is acceptable under the constraint of real-time applications. A data density of 8 km leads to a significant degradation in the analysis.


2012 ◽  
Vol 140 (10) ◽  
pp. 3300-3326 ◽  
Author(s):  
Xiaoming Sun ◽  
Ana P. Barros

Abstract The influence of large-scale forcing on the high-resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians was investigated using the Weather Research and Forecasting model (WRF). Two forcing datasets were employed: the North American Regional Reanalysis (NARR; 32 km × 32 km) and the NCEP Final Operational Global Analysis (NCEP FNL; 1° × 1°). Simulated fields were evaluated against rain gauge, radar, and satellite data; sounding observations; and the best track from the National Hurricane Center (NHC). Overall, the NCEP FNL forced simulation (WRF_FNL) captures storm structure and evolution more accurately than the NARR forced simulation (WRF_NARR), benefiting from the hurricane initialization scheme in the NCEP FNL. Further, the performance of WRF_NARR is also negatively affected by a previously documented low-level warm bias in NARR. These factors lead to excessive precipitation in the Piedmont region, delayed rainfall in Alabama, as well as spatially displaced and unrealistically extreme rainbands during its passage over the southern Appalachians. Spatial filtering of the simulated precipitation fields confirms that the storm characteristics inherited from the forcing are critical to capture the storm’s impact at local places. Compared with the NHC observations, the storm is weaker in both NARR and NCEP FNL (up to Δp ~ 5 hPa), yet it is persistently deeper in all WRF simulations forced by either dataset. The surface wind fields are largely overestimated. This is attributed to the underestimation of surface roughness length over land, leading to underestimation of surface drag, reducing low-level convergence, and weakening the dissipation of the simulated cyclone.


2018 ◽  
Vol 146 (2) ◽  
pp. 447-465 ◽  
Author(s):  
Mark Buehner ◽  
Ping Du ◽  
Joël Bédard

Abstract Two types of approaches are commonly used for estimating the impact of arbitrary subsets of observations on short-range forecast error. The first was developed for variational data assimilation systems and requires the adjoint of the forecast model. Comparable approaches were developed for use with the ensemble Kalman filter and rely on ensembles of forecasts. In this study, a new approach for computing observation impact is proposed for ensemble–variational data assimilation (EnVar). Like standard adjoint approaches, the adjoint of the data assimilation procedure is implemented through the iterative minimization of a modified cost function. However, like ensemble approaches, the adjoint of the forecast step is obtained by using an ensemble of forecasts. Numerical experiments were performed to compare the new approach with the standard adjoint approach in the context of operational deterministic NWP. Generally similar results are obtained with both approaches, especially when the new approach uses covariance localization that is horizontally advected between analysis and forecast times. However, large differences in estimated impacts are obtained for some surface observations. Vertical propagation of the observation impact is noticeably restricted with the new approach because of vertical covariance localization. The new approach is used to evaluate changes in observation impact as a result of the use of interchannel observation error correlations for radiance observations. The estimated observation impact in similarly configured global and regional prediction systems is also compared. Overall, the new approach should provide useful estimates of observation impact for data assimilation systems based on EnVar when an adjoint model is not available.


Author(s):  
Luke J. LeBel ◽  
Brian H. Tang ◽  
Ross A. Lazear

AbstractThe complex terrain at the intersection of the Mohawk and Hudson valleys of New York has an impact on the development and evolution of severe convection in the region. Specifically, previous research has concluded that terrain-channeled flow in the Mohawk and Hudson valleys likely contributes to increased low-level wind shear and instability in the valleys during severe weather events such as the historic 31 May 1998 event that produced a strong (F3) tornado in Mechanicville, New York.The goal of this study is to further examine the impact of terrain channeling on severe convection by analyzing a high-resolution WRF model simulation of the 31 May 1998 event. Results from the simulation suggest that terrain-channeled flow resulted in the localized formation of an enhanced low-level moisture gradient, resembling a dryline, at the intersection of the Mohawk and Hudson valleys. East of this boundary, the environment was characterized by stronger low-level wind shear and greater low-level moisture and instability, increasing tornadogenesis potential. A simulated supercell intensified after crossing the boundary, as the larger instability and streamwise vorticity of the low-level inflow was ingested into the supercell updraft. These results suggest that terrain can have a key role in producing mesoscale inhomogeneities that impact the evolution of severe convection. Recognition of these terrain-induced boundaries may help in anticipating where the risk of severe weather may be locally enhanced.


Sign in / Sign up

Export Citation Format

Share Document