scholarly journals Horizontal Momentum Diffusion in GCMs Using the Dynamic Smagorinsky Model

2013 ◽  
Vol 141 (3) ◽  
pp. 887-899 ◽  
Author(s):  
Urs Schaefer-Rolffs ◽  
Erich Becker

Abstract A dynamic version of Smagorinsky’s diffusion scheme is presented that is applicable for large-eddy simulations (LES) of the atmospheric dynamics. The approach is motivated (i) by the incompatibility of conventional hyperdiffusion schemes with the conservation laws, and (ii) because the conventional Smagorinsky model (which fulfills the conservation laws) does not maintain scale invariance, which is mandatory for a correct simulation of the macroturbulent kinetic energy spectrum. The authors derive a two-dimensional (horizontal) formulation of the dynamic Smagorinsky model (DSM) and present three solutions of the so-called Germano identity: the method of least squares, a solution without invariance of the Smagorinsky parameter, and a tensor-norm solution. The applicability of the tensor-norm approach is confirmed in simulations with the Kühlungsborn mechanistic general circulation model (KMCM). The standard spectral dynamical core of the model facilitates the implementation of the test filter procedure of the DSM. Various energy spectra simulated with the DSM and the conventional Smagorinsky scheme are presented. In particular, the results show that only the DSM allows for a reasonable spectrum at all scales. Latitude–height cross sections of zonal-mean fluid variables are given and show that the DSM preserves the main features of the atmospheric dynamics. The best ratio for the test-filter scale to the resolution scale is found to be 1.33, resulting in dynamically determined Smagorinsky parameters cS from 0.10 to 0.22 in the troposphere. This result is very similar to other values of cS found in previous three-dimensional applications of the DSM.

Ocean Science ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 61-71 ◽  
Author(s):  
J. Chiggiato ◽  
P. Oddo

Abstract. In the framework of the Mediterranean Forecasting System (MFS) project, the performance of regional numerical ocean forecasting systems is assessed by means of model-model and model-data comparison. Three different operational systems considered in this study are: the Adriatic REGional Model (AREG); the Adriatic Regional Ocean Modelling System (AdriaROMS) and the Mediterranean Forecasting System General Circulation Model (MFS-GCM). AREG and AdriaROMS are regional implementations (with some dedicated variations) of POM and ROMS, respectively, while MFS-GCM is an OPA based system. The assessment is done through standard scores. In situ and remote sensing data are used to evaluate the system performance. In particular, a set of CTD measurements collected in the whole western Adriatic during January 2006 and one year of satellite derived sea surface temperature measurements (SST) allow to asses a full three-dimensional picture of the operational forecasting systems quality during January 2006 and to draw some preliminary considerations on the temporal fluctuation of scores estimated on surface quantities between summer 2005 and summer 2006. The regional systems share a negative bias in simulated temperature and salinity. Nonetheless, they outperform the MFS-GCM in the shallowest locations. Results on amplitude and phase errors are improved in areas shallower than 50 m, while degraded in deeper locations, where major models deficiencies are related to vertical mixing overestimation. In a basin-wide overview, the two regional models show differences in the local displacement of errors. In addition, in locations where the regional models are mutually correlated, the aggregated mean squared error was found to be smaller, that is a useful outcome of having several operational systems in the same region.


1998 ◽  
Vol 103 (D20) ◽  
pp. 26025-26039 ◽  
Author(s):  
M. Doutriaux-Boucher ◽  
J. Pelon ◽  
V. Trouillet ◽  
G. Sèze ◽  
H. Le Treut ◽  
...  

2007 ◽  
Vol 64 (7) ◽  
pp. 2558-2575 ◽  
Author(s):  
Andrey Gritsun ◽  
Grant Branstator

Abstract The fluctuation–dissipation theorem (FDT) states that for systems with certain properties it is possible to generate a linear operator that gives the response of the system to weak external forcing simply by using covariances and lag-covariances of fluctuations of the undisturbed system. This paper points out that the theorem can be shown to hold for systems with properties very close to the properties of the earth’s atmosphere. As a test of the theorem’s applicability to the atmosphere, a three-dimensional operator for steady responses to external forcing is constructed for data from an atmospheric general circulation model (AGCM). The response of this operator is then compared to the response of the AGCM for various heating functions. In most cases, the FDT-based operator gives three-dimensional responses that are very similar in structure and amplitude to the corresponding GCM responses. The operator is also able to give accurate estimates for the inverse problem in which one derives the forcing that will produce a given response in the AGCM. In the few cases where the operator is not accurate, it appears that the fact that the operator was constructed in a reduced space is at least partly responsible. As an example of the potential utility of a response operator with the accuracy found here, the FDT-based operator is applied to a problem that is difficult to solve with an AGCM. It is used to generate an influence function that shows how well heating at each point on the globe excites the AGCM’s Northern Hemisphere annular mode (NAM). Most of the regions highlighted by this influence function, including the Arctic and tropical Indian Ocean, are verified by AGCM solutions as being effective locations for stimulating the NAM.


2012 ◽  
Vol 12 (10) ◽  
pp. 4775-4793 ◽  
Author(s):  
J. M. English ◽  
O. B. Toon ◽  
M. J. Mills

Abstract. Recent microphysical studies suggest that geoengineering by continuous stratospheric injection of SO2 gas may be limited by the growth of the aerosols. We study the efficacy of SO2, H2SO4 and aerosol injections on aerosol mass and optical depth using a three-dimensional general circulation model with sulfur chemistry and sectional aerosol microphysics (WACCM/CARMA). We find increasing injection rates of SO2 in a narrow band around the equator to have limited efficacy while broadening the injecting zone as well as injecting particles instead of SO2 gas increases the sulfate burden for a given injection rate, in agreement with previous work. We find that injecting H2SO4 gas instead of SO2 does not discernibly alter sulfate size or mass, in contrast with a previous study using a plume model with a microphysical model. However, the physics and chemistry in aircraft plumes, which are smaller than climate model grid cells, need to be more carefully considered. We also find significant perturbations to tropospheric aerosol for all injections studied, particularly in the upper troposphere and near the poles, where sulfate burden increases by up to 100 times. This enhanced burden could have implications for tropospheric radiative forcing and chemistry. These results highlight the need to mitigate greenhouse gas emissions rather than attempt to cool the planet through geoengineering, and to further study geoengineering before it can be seriously considered as a climate intervention option.


2010 ◽  
Vol 40 (7) ◽  
pp. 1441-1457 ◽  
Author(s):  
Zhu Min Lu ◽  
Rui Xin Huang

Abstract Based on the classical Ekman layer theory, a simple analytical solution of the steady flow induced by a stationary hurricane in a homogenous ocean is discussed. The model consists of flow converging in an inward spiral in the deeper layer and diverging in the upper layer. The simple analytical model indicates that both the upwelling flux and the horizontal transport increase linearly with increasing radius of maximum winds. Furthermore, they both have a parabolic relationship with the maximum wind speed. The Coriolis parameter also affects the upwelling flux: the response to a hurricane is stronger at low latitudes than that at middle latitudes. Numerical solutions based on a regional version of an ocean general circulation model are similar to the primary results obtained through the analytical solution. Thus, the simplifications made in formulating the analytical solution are reasonable. Although the analytical solution in this paper is sought for a rather idealized ocean, it can help to make results from the more complicated numerical model understandable. These conceptual models provide a theoretical limit structure of the oceanic response to a moving hurricane over a stratified ocean.


2013 ◽  
Vol 70 (12) ◽  
pp. 3756-3779 ◽  
Author(s):  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Kota Okamoto

Abstract A new method is proposed to estimate three-dimensional (3D) material circulation driven by waves based on recently derived formulas by Kinoshita and Sato that are applicable to both Rossby waves and gravity waves. The residual-mean flow is divided into three, that is, balanced flow, unbalanced flow, and Stokes drift. The latter two are wave-induced components estimated from momentum flux divergence and heat flux divergence, respectively. The unbalanced mean flow is equivalent to the zonal-mean flow in the two-dimensional (2D) transformed Eulerian mean (TEM) system. Although these formulas were derived using the “time mean,” the underlying assumption is the separation of spatial or temporal scales between the mean and wave fields. Thus, the formulas can be used for both transient and stationary waves. Considering that the average is inherently needed to remove an oscillatory component of unaveraged quadratic functions, the 3D wave activity flux and wave-induced residual-mean flow are estimated by an extended Hilbert transform. In this case, the scale of mean flow corresponds to the whole scale of the wave packet. Using simulation data from a gravity wave–resolving general circulation model, the 3D structure of the residual-mean circulation in the stratosphere and mesosphere is examined for January and July. The zonal-mean field of the estimated 3D circulation is consistent with the 2D circulation in the TEM system. An important result is that the residual-mean circulation is not zonally uniform in both the stratosphere and mesosphere. This is likely caused by longitudinally dependent wave sources and propagation characteristics. The contribution of planetary waves and gravity waves to these residual-mean flows is discussed.


Sign in / Sign up

Export Citation Format

Share Document