scholarly journals Composite VORTEX2 Supercell Environments from Near-Storm Soundings

2014 ◽  
Vol 142 (2) ◽  
pp. 508-529 ◽  
Author(s):  
Matthew D. Parker

Abstract Three-dimensional composite analyses using 134 soundings from the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) reveal the nature of near-storm variability in the environments of supercell thunderstorms. Based upon the full analysis, it appears that vertical wind shear increases as one approaches a supercell within the inflow sector, providing favorable conditions for supercell maintenance (and possibly tornado formation) despite small amounts of low-level cooling near the storm. The seven analyzed tornadic supercells have a composite environment that is clearly more impressive (in terms of widely used metrics) than that of the five analyzed nontornadic supercells, including more convective available potential energy (CAPE), more vertical wind shear, higher boundary layer relative humidity, and lower tropospheric horizontal vorticity that is more streamwise in the near-storm inflow. The widely used supercell composite parameter (SCP) and significant tornado parameter (STP) summarize these differences well. Comparison of composite environments from early versus late in supercells' lifetimes reveals only subtle signs of storm-induced environmental modification, but potentially important changes associated with the evening transition toward a cooler and moister boundary layer with enhanced low-level vertical shear. Finally, although this study focused primarily on the composite inflow environment, it is intriguing that the outflows sampled by VORTEX2 soundings were surprisingly shallow (generally ≤500 m deep) and retained considerable CAPE (generally ≥1000 J kg−1). The numerous VORTEX2 near-storm soundings provide an unprecedented observational view of supercell–environment interactions, and the analyses are ripe for use in a variety of future studies.

Author(s):  
Branden Katona ◽  
Paul Markowski

AbstractStorms crossing complex terrain can potentially encounter rapidly changing convective environments. However, our understanding of terrain-induced variability in convective stormenvironments remains limited. HRRR data are used to create climatologies of popular convective storm forecasting parameters for different wind regimes. Self-organizing maps (SOMs) are used to generate six different low-level wind regimes, characterized by different wind directions, for which popular instability and vertical wind shear parameters are averaged. The climatologies show that both instability and vertical wind shear are highly variable in regions of complex terrain, and that the spatial distributions of perturbations relative to the terrain are dependent on the low-level wind direction. Idealized simulations are used to investigate the origins of some of the perturbations seen in the SOM climatologies. The idealized simulations replicate many of the features in the SOM climatologies, which facilitates analysis of their dynamical origins. Terrain influences are greatest when winds are approximately perpendicular to the terrain. In such cases, a standing wave can develop in the lee, leading to an increase in low-level wind speed and a reduction in vertical wind shear with the valley lee of the plateau. Additionally, CAPE tends to be decreased and LCL heights are increased in the lee of the terrain where relative humidity within the boundary layer is locally decreased.


2009 ◽  
Vol 9 (3) ◽  
pp. 10711-10775 ◽  
Author(s):  
M. Riemer ◽  
M. T. Montgomery ◽  
M. E. Nicholls

Abstract. An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the classical idealised numerical experiment of tropical cyclones (TCs) in vertical wind shear on an f-plane. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. A suite of experiments is performed with intense TCs in moderate to strong vertical shear. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent downdrafts flux low θe air from the lower and middle troposphere into the boundary layer, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a strong correlation between the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the inflow layer with low θe air are associated with a quasi-stationary region of convective activity outside the TC's eyewall. We show evidence that, to zero order, the formation of the convective asymmetry is driven by the balanced dynamical response of the TC vortex to the vertical shear forcing. Thus a close link is provided between the thermodynamic impact in the near-core boundary layer and the balanced dynamics governing the TC vortex evolution.


2019 ◽  
Vol 76 (10) ◽  
pp. 3169-3189 ◽  
Author(s):  
John M. Peters ◽  
Christopher J. Nowotarski ◽  
Hugh Morrison

Abstract Observed supercell updrafts consistently produce the fastest mid- to upper-tropospheric vertical velocities among all modes of convection. Two hypotheses for this feature are investigated. In the dynamic hypothesis, upward, largely rotationally driven pressure gradient accelerations enhance supercell updrafts relative to other forms of convection. In the thermodynamic hypothesis, supercell updrafts have more low-level inflow than ordinary updrafts because of the large vertical wind shear in supercell environments. This large inflow makes supercell updrafts wider than that of ordinary convection and less susceptible to the deleterious effects of entrainment-driven updraft core dilution on buoyancy. These hypotheses are tested using a large suite of idealized supercell simulations, wherein vertical shear, CAPE, and moisture are systematically varied. Consistent with the thermodynamic hypothesis, storms with the largest storm-relative flow have larger inflow, are wider, have larger buoyancy, and have faster updrafts. Analyses of the vertical momentum forcing along trajectories shows that maximum vertical velocities are often enhanced by dynamic pressure accelerations, but this enhancement is accompanied by larger downward buoyant pressure accelerations than in ordinary convection. Integrated buoyancy along parcel paths is therefore a strong constraint on maximum updraft speeds. Thus, through a combination of processes consistent with the dynamic and thermodynamic hypotheses, supercell updrafts are able to realize a larger percentage of CAPE than ordinary updrafts.


2013 ◽  
Vol 28 (3) ◽  
pp. 863-892 ◽  
Author(s):  
Morris L. Weisman ◽  
Clark Evans ◽  
Lance Bosart

Abstract Herein, an analysis of a 3-km explicit convective simulation of an unusually intense bow echo and associated mesoscale vortex that were responsible for producing an extensive swath of high winds across Kansas, southern Missouri, and southern Illinois on 8 May 2009 is presented. The simulation was able to reproduce many of the key attributes of the observed system, including an intense [~100 kt (51.4 m s−1) at 850 hPa], 10-km-deep, 100-km-wide warm-core mesovortex and associated surface mesolow associated with a tropical storm–like reflectivity eye. A detailed analysis suggests that the simulated convection develops north of a weak east–west lower-tropospheric baroclinic zone, at the nose of an intensifying low-level jet. The system organizes into a north–south-oriented bow echo as it moves eastward along the preexisting baroclinic zone in an environment of large convective available potential energy (CAPE) and strong tropospheric vertical wind shear. Once the system moves east of the low-level jet and into an environment of weaker CAPE and weaker vertical wind shear, it begins an occlusion-like phase, producing a pronounced comma-shaped reflectivity echo with an intense warm-core mesovortex at the head of the comma. During this phase, a deep strip of cyclonic vertical vorticity located on the backside of the bow echo consolidates into a single vortex core. A notable weakening of the low-level convectively generated cold pool also occurs during this phase, perhaps drawing parallels to theories of tropical cyclogenesis wherein cold convective downdrafts must be substantially mitigated for subsequent system intensification.


2017 ◽  
Vol 145 (4) ◽  
pp. 1511-1528 ◽  
Author(s):  
Mateusz Taszarek ◽  
Harold E. Brooks ◽  
Bartosz Czernecki

Abstract Observed proximity soundings from Europe are used to highlight how well environmental parameters discriminate different kind of severe thunderstorm hazards. In addition, the skill of parameters in predicting lightning and waterspouts is also tested. The research area concentrates on central and western European countries and the years 2009–15. In total, 45 677 soundings are analyzed including 169 associated with extremely severe thunderstorms, 1754 with severe thunderstorms, 8361 with nonsevere thunderstorms, and 35 393 cases with nonzero convective available potential energy (CAPE) that had no thunderstorms. Results indicate that the occurrence of lightning is mainly a function of CAPE and is more likely when the temperature of the equilibrium level drops below −10°C. The probability for large hail is maximized with high values of boundary layer moisture, steep mid- and low-level lapse rates, and high lifting condensation level. The size of hail is mainly dependent on the deep layer shear (DLS) in a moderate to high CAPE environment. The likelihood of tornadoes increases along with increasing CAPE, DLS, and 0–1-km storm-relative helicity. Severe wind events are the most common in high vertical wind shear and steep low-level lapse rates. The probability for waterspouts is maximized in weak vertical wind shear and steep low-level lapse rates. Wind shear in the 0–3-km layer is the best at distinguishing between severe and extremely severe thunderstorms producing tornadoes and convective wind gusts. A parameter WMAXSHEAR multiplying square root of 2 times CAPE (WMAX) and DLS turned out to be the best in distinguishing between nonsevere and severe thunderstorms, and for assessing the severity of convective phenomena.


2006 ◽  
Vol 21 (2) ◽  
pp. 125-148 ◽  
Author(s):  
Hyung Woo Kim ◽  
Dong Kyou Lee

Abstract A heavy rainfall event induced by mesoscale convective systems (MCSs) occurred over the middle Korean Peninsula from 25 to 27 July 1996. This heavy rainfall caused a large loss of life and property damage as a result of flash floods and landslides. An observational study was conducted using Weather Surveillance Radar-1988 Doppler (WSR-88D) data from 0930 UTC 26 July to 0303 UTC 27 July 1996. Dominant synoptic features in this case had many similarities to those in previous studies, such as the presence of a quasi-stationary frontal system, a weak upper-level trough, sufficient moisture transportation by a low-level jet from a tropical storm landfall, strong potential and convective instability, and strong vertical wind shear. The thermodynamic characteristics and wind shear presented favorable conditions for a heavy rainfall occurrence. The early convective cells in the MCSs initiated over the coastal area, facilitated by the mesoscale boundaries of the land–sea contrast, rain–no rain regions, saturated–unsaturated soils, and steep horizontal pressure and thermal gradients. Two MCSs passed through the heavy rainfall regions during the investigation period. The first MCS initiated at 1000 UTC 26 July and had the characteristics of a supercell storm with small amounts of precipitation, the appearance of a mesocyclone with tilting storm, a rear-inflow jet at the midlevel of the storm, and fast forward propagation. The second MCS initiated over the upstream area of the first MCS at 1800 UTC 26 July and had the characteristics of a multicell storm, such as a broken areal-type squall line, slow or quasi-stationary backward propagation, heavy rainfall in a concentrated area due to the merging of the convective storms, and a stagnated cluster system. These systems merged and stagnated because their movement was blocked by the Taebaek Mountain Range, and they continued to develop because of the vertical wind shear resulting from a low-level easterly inflow.


2020 ◽  
Vol 12 (21) ◽  
pp. 3610
Author(s):  
Song Yang ◽  
Richard Bankert ◽  
Joshua Cossuth

The satellite passive microwave (PMW) sensor brightness temperatures (TBs) of all tropical cyclones (TCs) from 1987–2012 have been carefully calibrated for inter-sensor frequency differences, center position fixing using the Automated Rotational Center Hurricane Eye Retrieval (ARCHER) scheme, and application of the Backus–Gilbert interpolation scheme for better presentation of the TC horizontal structure. With additional storm motion direction and the 200–850 hPa wind shear direction, a unique and comprehensive TC database is created for this study. A reliable and detailed climatology for each TC category is analyzed and discussed. There is significant annual variability of the number of storms at hurricane intensity, but the annual number of all storms is relatively stable. Results based on the analysis of the 89 GHz horizontal polarization TBs over oceans are presented in this study. An eyewall contraction is clearly displayed with an increase in TC intensity. Three composition schemes are applied to present a reliable and detailed TC climatology at each intensity category and its geographic characteristics. The global composition relative to the North direction is not able to lead a realistic structure for an individual TC. Enhanced convection in the down-motion quadrants relative to direction of TC motion is obvious for Cat 1–3 TCs, while Cat 4–5 TCs still have a concentric pattern of convection within 200 km radius. Regional differences are evident for weak storms. Results indicate the direction of TC movement has more impact on weak storms than on Cat 4–5 TCs. A striking feature is that all TCs have a consistent pattern of minimum TBs at 89 GHz in the downshear left quadrant (DSLQ) for the northern hemisphere basins and in the downshear right quadrant (DSRQ) for the southern hemisphere basin, regarding the direction of the 200–850 hPa wind shear. Tropical depression and tropical storm have the minimum TBs in the downshear quadrants. The axis of the minimum TBs is slightly shifted toward the vertical shear direction. There is no geographic variation of storm structure relative to the vertical wind shear direction except over the southern hemisphere which shows a mirror image of the storm structure over the northern hemisphere. This study indicates that regional variation of storm structure relative to storm motion direction is mainly due to differences of the vertical wind shear direction among these basins. Results demonstrate the direction of the 200–850 hPa wind shear plays a critical role in TC structure.


2015 ◽  
Vol 15 (6) ◽  
pp. 8479-8523
Author(s):  
C.-C. Wang ◽  
H.-C. Kuo ◽  
R. H. Johnson ◽  
C.-Y. Lee ◽  
S.-Y. Huang ◽  
...  

Abstract. This paper investigates the formation and evolution of deep convection inside the east–west oriented rainbands associated with a low-level jet (LLJ) in Typhoon Morakot (2009). With typhoon center to the northwest of Taiwan, the westerly LLJ was resulted from the interaction of typhoon circulation with the southwest monsoon flow, which supplied the water vapor for the extreme rainfall (of ~1000 mm) over southwestern Taiwan. The Cloud-Resolving Storm Simulator with 1 km grid spacing was used to simulate the event, and it successfully reproduced the slow-moving rainbands, the embedded cells, and the dynamics of merger and back-building (BB) on 8 August as observed. Our model results suggest that the intense convection interacted strongly with the westerly LLJ that provided reversed vertical wind shear below and above the jet core. Inside mature cells, significant dynamical pressure perturbations (pd') are induced with positive (negative) pd' at the western (eastern) flank of the updraft near the surface and a reversed pattern aloft (>2 km). This configuration produced an upward directed pressure gradient force (PGF) to the rear side and favors new development to the west, which further leads to cell merger as the mature cells slowdown in eastward propagation. The strong updrafts also acted to elevate the jet and enhance the local vertical wind shear at the rear flank. Additional analysis reveals that the upward PGF there is resulted mainly by the shearing effect but also by the extension of upward acceleration at low levels. In the horizontal, the upstream-directed PGF induced by the rear-side positive pd' near the surface is much smaller, but can provide additional convergence for BB development upstream. Finally, the cold-pool mechanism for BB appears to be not important in the Morakot case, as the conditions for strong evaporation in downdrafts do not exist.


Author(s):  
Jake P. Mulholland ◽  
John M. Peters ◽  
Hugh Morrison

AbstractThe influence of vertical wind shear on updraft entrainment in squall lines is not well understood. To address this knowledge gap, a suite of high-resolution idealized numerical model simulations of squall lines were run in various vertical wind shear (hereafter “shear”) environments to study the effects of shear on entrainment in deep convective updrafts. Low-level horizontal mass flux into the leading edge of the cold pool was strongest in the simulations with the strongest low-level shear. These simulations consequently displayed wider updrafts, less entrainment-driven dilution, and larger buoyancy than the simulations with comparatively weak low-level shear. An analysis of vertical accelerations along trajectories that passed through updrafts showed larger net accelerations from buoyancy in the simulations with stronger low-level shear, which demonstrates how less entrainment-driven dilution equated to stronger updrafts. The effects of upper-level shear on entrainment and updraft vertical velocities were generally less pronounced than the effects of low-level shear. We argue that in addition to the outflow boundary-shear interactions and their effect on updraft tilt established by previous authors, decreased entrainment-driven dilution is yet another beneficial effect of strong low-level shear on squall line updraft intensity.


Author(s):  
Annette M. Boehm ◽  
Michael M. Bell

AbstractThe newly developed SAMURAI-TR is used to estimate three-dimensional temperature and pressure perturbations in Hurricane Rita on 23 September 2005 from multi-Doppler radar data during the RAINEX field campaign. These are believed to be the first fully three-dimensional gridded thermodynamic observations from a TC. Rita was a major hurricane at this time and was affected by 13 m s−1 deep-layer vertical wind shear. Analysis of the contributions of the kinematic and retrieved thermodynamic fields to different azimuthal wavenumbers suggests the interpretation of eyewall convective forcing within a three-level framework of balanced, quasi-balanced, and unbalanced motions. The axisymmetric, wavenumber-0 structure was approximately in thermal-wind balance, resulting in a large pressure drop and temperature increase toward the center. The wavenumber-1 structure was determined by the interaction of the storm with environmental vertical wind shear resulting in a quasi-balance between shear and shear-induced kinematic and thermo-dynamic perturbations. The observed wavenumber-1 thermodynamic asymmetries corroborate results of previous studies on the response of a vortex tilted by shear, and add new evidence that the vertical motion is nearly hydrostatic on the wavenumber-1 scale. Higher-order wavenumbers were associated with unbalanced motions and convective cells within the eyewall. The unbalanced vertical acceleration was positively correlated with buoyant forcing from thermal perturbations and negatively correlated with perturbation pressure gradients relative to the balanced vortex.


Sign in / Sign up

Export Citation Format

Share Document