scholarly journals Improving Precipitation Forecasts by Generating Ensembles through Postprocessing

2015 ◽  
Vol 143 (9) ◽  
pp. 3642-3663 ◽  
Author(s):  
Durga Lal Shrestha ◽  
David E. Robertson ◽  
James C. Bennett ◽  
Q. J. Wang

Abstract This paper evaluates a postprocessing method for deterministic quantitative precipitation forecasts (raw QPFs) from a numerical weather prediction model. The postprocessing aims to produce calibrated QPF ensembles that are bias free, more accurate than raw QPFs, and reliable for use in streamflow forecasting applications. The method combines a simplified version of the Bayesian joint probability (BJP) modeling approach and the Schaake shuffle. The BJP modeling approach relates raw QPFs and observed precipitation by modeling their joint distribution. It corrects biases in the raw QPFs and generates ensemble forecasts that reflect the uncertainty in the raw QPFs. The BJP modeling approach is applied to each lead time and each forecast location separately. The Schaake shuffle is then employed to produce calibrated QPFs with appropriate space–time correlations by linking ensemble members generated by the BJP modeling approach. Calibrated QPFs are produced for 10 Australian catchments that cover a wide range of climatic conditions and hydrological characteristics. The calibrated QPFs are bias free, contain smaller forecast errors than that of the raw QPFs, reliably quantify the forecast uncertainty at a range of lead times, and successfully discriminate common and rare events of precipitation occurrences at shorter lead times. The postprocessing method is able to instill realistic within-catchment spatial variability in the QPFs, which is crucial for accurate and reliable streamflow forecasting.

2016 ◽  
Vol 144 (4) ◽  
pp. 1273-1298 ◽  
Author(s):  
Yunji Zhang ◽  
Fuqing Zhang ◽  
David J. Stensrud ◽  
Zhiyong Meng

Abstract Using a high-resolution convection-allowing numerical weather prediction model, this study seeks to explore the intrinsic predictability of the severe tornadic thunderstorm event on 20 May 2013 in Oklahoma from its preinitiation environment to initiation, upscale organization, and interaction with other convective storms. This is accomplished through ensemble forecasts perturbed with minute initial condition uncertainties that were beyond detection capabilities of any current observational platforms. It was found that these small perturbations, too small to modify the initial mesoscale environmental instability and moisture fields, will be propagated and evolved via turbulence within the PBL and rapidly amplified in moist convective processes through positive feedbacks associated with updrafts, phase transitions of water species, and cold pools, thus greatly affecting the appearance, organization, and development of thunderstorms. The forecast errors remain nearly unchanged even when the initial perturbations (errors) were reduced by as much as 90%, which strongly suggests an inherently limited predictability for this thunderstorm event for lead times as short as 3–6 h. Further scale decomposition reveals rapid error growth and saturation in meso-γ scales (regardless of the magnitude of initial errors) and subsequent upscale growth into meso-β scales.


2010 ◽  
Vol 11 (1) ◽  
pp. 69-86 ◽  
Author(s):  
Giuseppe Mascaro ◽  
Enrique R. Vivoni ◽  
Roberto Deidda

Abstract Evaluating the propagation of errors associated with ensemble quantitative precipitation forecasts (QPFs) into the ensemble streamflow response is important to reduce uncertainty in operational flow forecasting. In this paper, a multifractal rainfall downscaling model is coupled with a fully distributed hydrological model to create, under controlled conditions, an extensive set of synthetic hydrometeorological events, assumed as observations. Subsequently, for each event, flood hindcasts are simulated by the hydrological model using three ensembles of QPFs—one reliable and the other two affected by different kinds of precipitation forecast errors—generated by the downscaling model. Two verification tools based on the verification rank histogram and the continuous ranked probability score are then used to evaluate the characteristics of the correspondent three sets of ensemble streamflow forecasts. Analyses indicate that the best forecast accuracy of the ensemble streamflows is obtained when the reliable ensemble QPFs are used. In addition, results underline (i) the importance of hindcasting to create an adequate set of data that span a wide range of hydrometeorological conditions and (ii) the sensitivity of the ensemble streamflow verification to the effects of basin initial conditions and the properties of the ensemble precipitation distributions. This study provides a contribution to the field of operational flow forecasting by highlighting a series of requirements and challenges that should be considered when hydrologic ensemble forecasts are evaluated.


2013 ◽  
Vol 17 (9) ◽  
pp. 3587-3603 ◽  
Author(s):  
D. E. Robertson ◽  
D. L. Shrestha ◽  
Q. J. Wang

Abstract. Sub-daily ensemble rainfall forecasts that are bias free and reliably quantify forecast uncertainty are critical for flood and short-term ensemble streamflow forecasting. Post-processing of rainfall predictions from numerical weather prediction models is typically required to provide rainfall forecasts with these properties. In this paper, a new approach to generate ensemble rainfall forecasts by post-processing raw numerical weather prediction (NWP) rainfall predictions is introduced. The approach uses a simplified version of the Bayesian joint probability modelling approach to produce forecast probability distributions for individual locations and forecast lead times. Ensemble forecasts with appropriate spatial and temporal correlations are then generated by linking samples from the forecast probability distributions using the Schaake shuffle. The new approach is evaluated by applying it to post-process predictions from the ACCESS-R numerical weather prediction model at rain gauge locations in the Ovens catchment in southern Australia. The joint distribution of NWP predicted and observed rainfall is shown to be well described by the assumed log-sinh transformed bivariate normal distribution. Ensemble forecasts produced using the approach are shown to be more skilful than the raw NWP predictions both for individual forecast lead times and for cumulative totals throughout all forecast lead times. Skill increases result from the correction of not only the mean bias, but also biases conditional on the magnitude of the NWP rainfall prediction. The post-processed forecast ensembles are demonstrated to successfully discriminate between events and non-events for both small and large rainfall occurrences, and reliably quantify the forecast uncertainty. Future work will assess the efficacy of the post-processing method for a wider range of climatic conditions and also investigate the benefits of using post-processed rainfall forecasts for flood and short-term streamflow forecasting.


2020 ◽  
Author(s):  
Stephan Hemri ◽  
Christoph Spirig ◽  
Jonas Bhend ◽  
Lionel Moret ◽  
Mark Liniger

<p>Over the last decades ensemble approaches have become state-of-the-art for the quantification of weather forecast uncertainty. Despite ongoing improvements, ensemble forecasts issued by numerical weather prediction models (NWPs) still tend to be biased and underdispersed. Statistical postprocessing has proven to be an appropriate tool to correct biases and underdispersion, and hence to improve forecast skill. Here we focus on multi-model postprocessing of cloud cover forecasts in Switzerland. In order to issue postprocessed forecasts at any point in space, ensemble model output statistics (EMOS) models are trained and verified against EUMETSAT CM SAF satellite data with a spatial resolution of around 2 km over Switzerland. Training with a minimal record length of the past 45 days of forecast and observation data already produced an EMOS model improving direct model output (DMO). Training on a 3 years record of the corresponding season further improved the performance. We evaluate how well postprocessing corrects the most severe forecast errors, like missing fog and low level stratus in winter. For such conditions, postprocessing of cloud cover benefits strongly from incorporating additional predictors into the postprocessing suite. A quasi-operational prototype has been set up and was used to explore meteogram-like visualizations of probabilistic cloud cover forecasts.</p>


2012 ◽  
Vol 140 (8) ◽  
pp. 2609-2627 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Edward R. Mansell ◽  
Conrad L. Ziegler ◽  
Donald R. MacGorman

Abstract This study presents the assimilation of total lightning data to help initiate convection at cloud-resolving scales within a numerical weather prediction model. The test case is the 24 May 2011 Oklahoma tornado outbreak, which was characterized by an exceptional synoptic/mesoscale setup for the development of long-lived supercells with large destructive tornadoes. In an attempt to reproduce the observed storms at a predetermined analysis time, total lightning data were assimilated into the Weather Research and Forecasting Model (WRF) and analyzed via a suite of simple numerical experiments. Lightning data assimilation forced deep, moist precipitating convection to occur in the model at roughly the locations and intensities of the observed storms as depicted by observations from the National Severe Storms Laboratory’s three-dimensional National Mosaic and Multisensor Quantitative Precipitation Estimation (QPE)—i.e., NMQ—radar reflectivity mosaic product. The nudging function for the total lightning data locally increases the water vapor mixing ratio (and hence relative humidity) via a simple smooth continuous function using gridded pseudo-Geostationary Lightning Mapper (GLM) resolution (9 km) flash rate and simulated graupel mixing ratio as input variables. The assimilation of the total lightning data for only a few hours prior to the analysis time significantly improved the representation of the convection at analysis time and at the 1-h forecast within the convective permitting and convective resolving grids (i.e., 3 and 1 km, respectively). The results also highlighted possible forecast errors resulting from errors in the initial mesoscale thermodynamic variable fields. Although this case was primarily an analysis rather than a forecast, this simple and computationally inexpensive assimilation technique showed promising results and could be useful when applied to events characterized by moderate to intense lightning activity.


2007 ◽  
Vol 7 (4) ◽  
pp. 431-444 ◽  
Author(s):  
J. Komma ◽  
C. Reszler ◽  
G. Blöschl ◽  
T. Haiden

Abstract. Quantifying the uncertainty of flood forecasts by ensemble methods is becoming increasingly important for operational purposes. The aim of this paper is to examine how the ensemble distribution of precipitation forecasts propagates in the catchment system, and to interpret the flood forecast probabilities relative to the forecast errors. We use the 622 km2 Kamp catchment in Austria as an example where a comprehensive data set, including a 500 yr and a 1000 yr flood, is available. A spatially-distributed continuous rainfall-runoff model is used along with ensemble and deterministic precipitation forecasts that combine rain gauge data, radar data and the forecast fields of the ALADIN and ECMWF numerical weather prediction models. The analyses indicate that, for long lead times, the variability of the precipitation ensemble is amplified as it propagates through the catchment system as a result of non-linear catchment response. In contrast, for lead times shorter than the catchment lag time (e.g. 12 h and less), the variability of the precipitation ensemble is decreased as the forecasts are mainly controlled by observed upstream runoff and observed precipitation. Assuming that all ensemble members are equally likely, the statistical analyses for five flood events at the Kamp showed that the ensemble spread of the flood forecasts is always narrower than the distribution of the forecast errors. This is because the ensemble forecasts focus on the uncertainty in forecast precipitation as the dominant source of uncertainty, and other sources of uncertainty are not accounted for. However, a number of analyses, including Relative Operating Characteristic diagrams, indicate that the ensemble spread is a useful indicator to assess potential forecast errors for lead times larger than 12 h.


2011 ◽  
Vol 12 (5) ◽  
pp. 713-728 ◽  
Author(s):  
Lan Cuo ◽  
Thomas C. Pagano ◽  
Q. J. Wang

Abstract Unknown future precipitation is the dominant source of uncertainty for many streamflow forecasts. Numerical weather prediction (NWP) models can be used to generate quantitative precipitation forecasts (QPF) to reduce this uncertainty. The usability and usefulness of NWP model outputs depend on the application time and space scales as well as forecast lead time. For streamflow nowcasting (very short lead times; e.g., 12 h), many applications are based on measured in situ or radar-based real-time precipitation and/or the extrapolation of recent precipitation patterns. QPF based on NWP model output may be more useful in extending forecast lead time, particularly in the range of a few days to a week, although low NWP model skill remains a major obstacle. Ensemble outputs from NWP models are used to articulate QPF uncertainty, improve forecast skill, and extend forecast lead times. Hydrologic prediction driven by these ensembles has been an active research field, although operational adoption has lagged behind. Conversely, relatively little study has been done on the hydrologic component (i.e., model, parameter, and initial condition) of uncertainty in the streamflow prediction system. Four domains of research are identified: selection and evaluation of NWP model–based QPF products, improved QPF products, appropriate hydrologic modeling, and integrated applications.


2017 ◽  
Vol 56 (1) ◽  
pp. 85-108 ◽  
Author(s):  
Jared A. Lee ◽  
Sue Ellen Haupt ◽  
Pedro A. Jiménez ◽  
Matthew A. Rogers ◽  
Steven D. Miller ◽  
...  

AbstractThe Sun4Cast solar power forecasting system, designed to predict solar irradiance and power generation at solar farms, is composed of several component models operating on both the nowcasting (0–6 h) and day-ahead forecast horizons. The different nowcasting models include a statistical forecasting model (StatCast), two satellite-based forecasting models [the Cooperative Institute for Research in the Atmosphere Nowcast (CIRACast) and the Multisensor Advection-Diffusion Nowcast (MADCast)], and a numerical weather prediction model (WRF-Solar). It is important to better understand and assess the strengths and weaknesses of these short-range models to facilitate further improvements. To that end, each of these models, including four WRF-Solar configurations, was evaluated for four case days in April 2014. For each model, the 15-min average predicted global horizontal irradiance (GHI) was compared with GHI observations from a network of seven pyranometers operated by the Sacramento Municipal Utility District (SMUD) in California. Each case day represents a canonical sky-cover regime for the SMUD region and thus represents different modeling challenges. The analysis found that each of the nowcasting models perform better or worse for particular lead times and weather situations. StatCast performs best in clear skies and for 0–1-h forecasts; CIRACast and MADCast perform reasonably well when cloud fields are not rapidly growing or dissipating; and WRF-Solar, when configured with a high-spatial-resolution aerosol climatology and a shallow cumulus parameterization, generally performs well in all situations. Further research is needed to develop an optimal dynamic blending technique that provides a single best forecast to energy utility operators.


2013 ◽  
Vol 141 (6) ◽  
pp. 2107-2119 ◽  
Author(s):  
J. McLean Sloughter ◽  
Tilmann Gneiting ◽  
Adrian E. Raftery

Abstract Probabilistic forecasts of wind vectors are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Unlike other common forecasting problems, which deal with univariate quantities, statistical approaches to wind vector forecasting must be based on bivariate distributions. The prevailing paradigm in weather forecasting is to issue deterministic forecasts based on numerical weather prediction models. Uncertainty can then be assessed through ensemble forecasts, where multiple estimates of the current state of the atmosphere are used to generate a collection of deterministic predictions. Ensemble forecasts are often uncalibrated, however, and Bayesian model averaging (BMA) is a statistical way of postprocessing these forecast ensembles to create calibrated predictive probability density functions (PDFs). It represents the predictive PDF as a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights reflect the forecasts’ relative contributions to predictive skill over a training period. In this paper the authors extend the BMA methodology to use bivariate distributions, enabling them to provide probabilistic forecasts of wind vectors. The BMA method is applied to 48-h-ahead forecasts of wind vectors over the North American Pacific Northwest in 2003 using the University of Washington mesoscale ensemble and is shown to provide better-calibrated probabilistic forecasts than the raw ensemble, which are also sharper than probabilistic forecasts derived from climatology.


2012 ◽  
Vol 9 (11) ◽  
pp. 12563-12611 ◽  
Author(s):  
D. L. Shrestha ◽  
D. E. Robertson ◽  
Q. J. Wang ◽  
T. C. Pagano ◽  
P. Hapuarachchi

Abstract. The quality of precipitation forecasts from four Numerical Weather Prediction (NWP) models is evaluated over the Ovens catchment in southeast Australia. Precipitation forecasts are compared with observed precipitation at point and catchment scales and at different temporal resolutions. The four models evaluated are the Australian Community Climate Earth-System Simulator (ACCESS) including ACCESS-G with a 80 km resolution, ACCESS-R 37.5 km, ACCESS-A 12 km, and ACCESS-VT 5 km. The high spatial resolution NWP models (ACCESS-A and ACCESS-VT) appear to be relatively free of bias (i.e. <30%) for 24 h total precipitation forecasts. The low resolution models (ACCESS-R and ACCESS-G) have widespread systematic biases as large as 70%. When evaluated at finer spatial and temporal resolution (e.g. 5 km, hourly) against station observations, the precipitation forecasts appear to have very little skill. There is moderate skill at short lead times when the forecasts are averaged up to daily and/or catchment scale. The skill decreases with increasing lead times and the global model ACCESS-G does not have significant skill beyond 7 days. The precipitation forecasts fail to produce a diurnal cycle shown in observed precipitation. Significant sampling uncertainty in the skill scores suggests that more data are required to get a reliable evaluation of the forecasts. Future work is planned to assess the benefits of using the NWP rainfall forecasts for short-term streamflow forecasting. Our findings here suggest that it is necessary to remove the systematic biases in rainfall forecasts, particularly those from low resolution models, before the rainfall forecasts can be used for streamflow forecasting.


Sign in / Sign up

Export Citation Format

Share Document