scholarly journals A Numerical Study of the 6 May 2012 Tsukuba City Supercell Tornado. Part I: Vorticity Sources of Low-Level and Midlevel Mesocyclones

2016 ◽  
Vol 144 (3) ◽  
pp. 1069-1092 ◽  
Author(s):  
Wataru Mashiko

Abstract On 6 May 2012, an F3 supercell tornado, one of the most destructive tornadoes ever recorded in Japan, hit Tsukuba City in eastern Japan and caused severe damage. To clarify the generation mechanisms of the tornadic storm and tornado, high-resolution numerical simulations were conducted under realistic environmental conditions using triply nested grids. The innermost simulation with a 50-m mesh successfully reproduced the Tsukuba City tornadic supercell storm. In this study (the first of a two-part study), the vorticity sources responsible for mesocyclogenesis prior to tornadogenesis were investigated by analyzing vortex lines and the evolution of circulation of the mesocyclones. Vortex lines that passed through the midlevel mesocyclone (4-km height) originated from the environmental streamwise vorticity, whereas the low-level mesocyclone and low-level mesoanticyclone were connected by several arching vortex lines over the rear-flank downdraft associated with the hook-shaped distribution of hydrometeors (hereafter hook echo). Most of the circulation for the circuit surrounding the midlevel mesocyclone was conserved, although the baroclinity associated with positive buoyancy within the storm led to an up-and-down trend. The circulation of the material circuit encircling the low-level mesocyclone showed a gradual increase caused by baroclinity along the forward-flank gust front. Friction also had a positive net effect on the circulation. In contrast, most of the negative circulation of the low-level mesoanticyclone was rapidly acquired owing to baroclinity around the tip of the hook echo. Just after tornadogenesis, the low-level mesocyclone intensified significantly and developed upward, which caused retrograde motion of the midlevel mesocyclone.

2009 ◽  
Vol 137 (12) ◽  
pp. 4238-4260 ◽  
Author(s):  
Wataru Mashiko ◽  
Hiroshi Niino ◽  
Teruyuki Kato

Abstract On 17 September 2006, three tornadoes occurred along the east coast of Kyusyu Island in western Japan during the passage of an outer rainband in the right-front quadrant of Typhoon Shanshan. To clarify the structure of the tornado-producing storms and the mechanism of tornadogenesis, quadruply nested numerical simulations were performed using a nonhydrostatic model with an innermost horizontal grid spacing of 50 m. Several simulated convective storms in the outermost rainband exhibited characteristics of a minisupercell. One storm had a strong rotating updraft of more than 30 m s−1 and a large vertical vorticity exceeding 0.06 s−1. This storm spawned a tornado when the low-level mesocyclone intensified. The tornado was generated on the rear-flank gust front near the mesocyclone center when a secondary rear-flank downdraft (RFD) surge advanced cyclonically around the low-level mesocyclone and overtook the rear-flank gust front at its left-front edge. Backward trajectories and vorticity budget analysis along the trajectories indicate that the secondary RFD surge played a key role in tornadogenesis by barotropically transporting the large streamwise vorticity associated with the environmental low-level veering shear toward the surface. When the secondary RFD outflow surge boundary reached the rear-flank gust front, the horizontal convergence was enhanced, contributing to the rapid amplification of the vertically tilted streamwise vorticity. The diagnostics of the vertical momentum equation and several sensitivity experiments demonstrated that precipitation loading in the area of a hook-shaped precipitation pattern was crucial to the behavior of the RFD and the subsequent tornadogenesis.


2020 ◽  
Vol 148 (3) ◽  
pp. 1205-1228 ◽  
Author(s):  
Tao Tao ◽  
Tetsuro Tamura

Abstract Remarkable progress has been achieved in understanding the vorticity source responsible for tornadogenesis. Nevertheless, the answer to this question remains elusive, particularly after introducing surface friction in realistic tornado simulations. In this study, a simulation using the Weather Research and Forecasting (WRF) Model is conducted based on the F3 supercell tornado that hit Tsukuba City, Japan, on 6 May 2012. The simulation uses triply nested domains, and the tornado is successfully reproduced in the innermost domain with 50-m horizontal grid spacing. The circulation analyses reveal that the frictional term is the dominant vorticity source responsible for the vortices at both the pretornadic and tornadogenesis times. The detailed vorticity source analyses of the air parcels show that the vorticity of the tornado at the genesis time mainly originates from the frictionally generated crosswise vorticity near the ground. The crosswise vorticity is directly tilted (or first exchanged into streamwise vorticity and then tilted) into vertical vorticity when the air parcels enter the tornado. A rear-flank downdraft (RFD) surge from the south and west sides of a primary low-level mesocyclone (LMC) may trigger tornadogenesis by increasing the convergence near the ground. The RFD surge is not necessarily associated with the baroclinically generated vorticity. In this study, the baroclinity is weak across the hook echo, which may cause a lack of baroclinically generated vorticity in the RFD surge.


Author(s):  
Luke J. LeBel ◽  
Brian H. Tang ◽  
Ross A. Lazear

AbstractThe complex terrain at the intersection of the Mohawk and Hudson valleys of New York has an impact on the development and evolution of severe convection in the region. Specifically, previous research has concluded that terrain-channeled flow in the Mohawk and Hudson valleys likely contributes to increased low-level wind shear and instability in the valleys during severe weather events such as the historic 31 May 1998 event that produced a strong (F3) tornado in Mechanicville, New York.The goal of this study is to further examine the impact of terrain channeling on severe convection by analyzing a high-resolution WRF model simulation of the 31 May 1998 event. Results from the simulation suggest that terrain-channeled flow resulted in the localized formation of an enhanced low-level moisture gradient, resembling a dryline, at the intersection of the Mohawk and Hudson valleys. East of this boundary, the environment was characterized by stronger low-level wind shear and greater low-level moisture and instability, increasing tornadogenesis potential. A simulated supercell intensified after crossing the boundary, as the larger instability and streamwise vorticity of the low-level inflow was ingested into the supercell updraft. These results suggest that terrain can have a key role in producing mesoscale inhomogeneities that impact the evolution of severe convection. Recognition of these terrain-induced boundaries may help in anticipating where the risk of severe weather may be locally enhanced.


2015 ◽  
Vol 3 (8) ◽  
pp. 4919-4935
Author(s):  
J. Guerbette ◽  
M. Plu ◽  
C. Barthe ◽  
J.-F. Mahfouf

Abstract. The role of an active phase of the Madden–Julian Oscillation (MJO) on the evolution of a mesoscale convective systems (MCS) leading to a tropical depression is investigated in the South-West Indian Ocean during the Dynamics of the Madden–Julian Oscillation (DYNAMO) field experiment, with a numerical limited-area atmospheric model. A mesoscale vortex is followed in the low-troposphere from the initiation of the active MJO phase. It is shown that the interaction of the vortex with the Equatorial jet associated with the MJO plays an important role on the vortex development. As the vortex encounters the southern part of the low-level jet, it undergoes intensification that is explained by the barotropic conversion of kinetic energy from the low-level jet to the vortex.


2017 ◽  
Vol 74 (10) ◽  
pp. 3191-3208 ◽  
Author(s):  
Adam L. Houston

Abstract A physical mechanism based on density current dynamics is proposed to explain the generation of low-level vertical vorticity in supercells. This mechanism may serve as one explanation for the associative relationship between environmental low-level vertical shear and the occurrence of significant tornadoes. The mechanism proposed herein represents an indirect connection to the generation of strong surface-based rotation: the barotropic horizontal vorticity associated with the vertical shear acts to amplify existing rotation but does not directly contribute to surface rotation. The proposed mechanism couples the likelihood of a tornado to the vertical shear through the pattern of vertical motion induced through interaction of a deformed gust front and the environmental vertical shear. Results from the experiments conducted to test the veracity of the proposed mechanism illustrate that inferred patterns of tilting and vortex line orientation are consistent with the generation of positive vertical vorticity near the axis of the existing mesocyclone and negative vertical vorticity along the rear-flank gust front. Moreover, inferred tilting is found to scale with the magnitude of the environmental vertical shear, consistent with the climatologies that motivate this work. Experiments also reveal that the proposed mechanism is capable of relating boundary deformation, mesocyclone strength, and hodograph shape to the ultimate likelihood of tornadogenesis.


2006 ◽  
Vol 24 (11) ◽  
pp. 2793-2808 ◽  
Author(s):  
D. Pozo ◽  
I. Borrajero ◽  
J. C. Marín ◽  
G. B. Raga

Abstract. In the first part of this study, an external 3-D ambient field (3d-field) was used to initiate a simulation (Sim1). In this paper, the influence of the 3-D field in the occurrence of the cloud merger simulated in Sim1 is studied. The surface convergence was very important to supply the lifting necessary for the development of new the convection. The interaction of the gust front from an old cloud with the environmental wind, as well as the interaction between the two gust fronts, were the main factors that enhanced the surface convergence. A favorable perturbation pressure gradient was also found to intensify this mechanism. The formation and development of a new cloud from the cloud bridge was the main feature for the occurrence of the cloud merger. The influence of the wind shear components and the relative humidity (RH) in the occurrence of the cloud merger was also analyzed. The parallel wind shear component and the large RH present in the zone of study had a positive contribution to the occurrence of the cloud merger. However, the perpendicular wind shear component did not provide the main forced lifting which would be capable of generating the new convection along the direction between interacting clouds. A high resolution simulation corroborated that the cloud merger was correctly simulated and it was not obtained by unrealistic effects due to the coarse resolution employed. It evidenced that when the horizontal resolution is improved, the life cycle of each cloud and the different processes related to their interactions are better described.


2019 ◽  
Vol 124 (24) ◽  
pp. 13843-13860 ◽  
Author(s):  
Abuduwaili Abulikemu ◽  
Yan Wang ◽  
Runxiang Gao ◽  
Yuan Wang ◽  
Xin Xu

2019 ◽  
Vol 76 (8) ◽  
pp. 2309-2334 ◽  
Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

Abstract Given comparable background vertical wind shear (VWS) magnitudes, the initially imposed shear-relative low-level mean flow (LMF) is hypothesized to modify the structure and convective features of a tropical cyclone (TC). This study uses idealized Weather Research and Forecasting Model simulations to examine TC structure and convection affected by various LMFs directed toward eight shear-relative orientations. The simulated TC affected by an initially imposed LMF directed toward downshear left yields an anomalously high intensification rate, while an upshear-right LMF yields a relatively high expansion rate. These two shear-relative LMF orientations affect the asymmetry of both surface fluxes and frictional inflow in the boundary layer and thus modify the TC convection. During the early development stage, the initially imposed downshear-left LMF promotes inner-core convection because of high boundary layer moisture fluxes into the inner core and is thus favorable for TC intensification because of large radial fluxes of azimuthal mean vorticity near the radius of maximum wind in the boundary layer. However, TCs affected by various LMFs may modify the near-TC VWS differently, making the intensity evolution afterward more complicated. The TC with a fast-established eyewall in response to the downshear-left LMF further reduces the near-TC VWS, maintaining a relatively high intensification rate. For the upshear-right LMF that leads to active and sustained rainbands in the downshear quadrants, TC size expansion is promoted by a positive radial flux of eddy vorticity near the radius of 34-kt wind (1 kt ≈ 0.51 m s−1) because the vorticity associated with the rainbands is in phase with the storm-motion-relative inflow.


2005 ◽  
Vol 62 (9) ◽  
pp. 3232-3249 ◽  
Author(s):  
Gregory J. Tripoli

Abstract This paper presents the results of a series of idealized cloud resolving simulations of the evolution of moist roll convection observed as part of the Lake-Induced Convection Experiment (Lake-ICE) that took place during the 1997/98 winter over central Lake Michigan. Satellite and radar observations of the roll convection depict striking linear rolls stretching from 10 km off the western shore of the lake, across to the eastern shore, and then continuing across Michigan. The spacing of the primary rolls was observed to be 6 km, giving a ratio of spacing to depth of about 5:1, which is consistent with theory. In addition, a longer wavelength (13 km) of stationary banding was observed parallel to the shoreline. In an earlier study of this case, multiply nested simulations of the convective rolls based on real data variable initialization were successful in producing banded structures with similar spacing and location over the water to those observed using fine grid resolution of about 500 m. Unfortunately, the initial locations of simulated bands were organized primarily by numerical effects of grid interpolation. This suggested that the spacing of the bands was robust, but that their initial location was highly sensitive to subtle systematic forcings. In this paper, a set of idealized model experiments, designed to isolate the role that physically realistic local forcing plays in the organization of the rolls, was performed. Because externally generated upstream turbulence was suppressed in these tests so as not to bias the result, the generation of rolls was delayed until 20–30 km downwind of the observed location and the location simulated in the previous grid nesting experiments. It was shown that the subtle effects of the shoreline geometry were sufficient to spawn a near-surface streamwise vorticity that became the primary seed for roll development at the most efficient mode of roll convection. These results suggest that previous structures evolved in the upstream shear-driven land-based mixed layer were likely also important in determining where the nonlocal overturning was first triggered. It is not clear from these results whether the shear-driven structures that evolved over the land also played a significant role in organizing the structural geometry of the lake rolls. Results also suggested that the shore parallel bands were a robust feature of the atmospheric structure resulting from resonant gravity wave trapping in the frontal layer.


1999 ◽  
Vol 77 (4) ◽  
pp. 827-843 ◽  
Author(s):  
Fumiaki Fujibe ◽  
Kazuo Saito ◽  
David S. Wratt ◽  
Stuart G. Bradley

Sign in / Sign up

Export Citation Format

Share Document