scholarly journals Resolution Dependence of Initiation and Upscale Growth of Deep Convection in Convection-Allowing Forecasts of the 31 May–1 June 2013 Supercell and MCS

2015 ◽  
Vol 143 (11) ◽  
pp. 4331-4354 ◽  
Author(s):  
Russ S. Schumacher

Abstract On 31 May 2013, a supercell thunderstorm initiated in west-central Oklahoma and produced a deadly tornado. This convection then grew upscale, with a nearly stationary line developing early on 1 June that produced very heavy rainfall and caused deadly flash flooding in the Oklahoma City area. Real-time convection-allowing (Δx = 4 km) model forecasts used during the Mesoscale Predictability Experiment (MPEX) provided accurate guidance regarding the timing, location, and evolution of convection in this case. However, attempts to simulate this event at higher resolution degraded the forecast, with the primary supercell failing to initiate and the evolution of the overnight MCS not resembling the observed system. Experiments to test the dependence of forecasts of this event on model resolution show that with grid spacing smaller than 4 km, mixing along the dryline in northwest Texas was more vigorous, causing low-level dry air to move more quickly eastward into Oklahoma. This drying prevented the supercell from initiating near the triple point in the higher-resolution simulations. Then, the lack of supercellular convection and its associated cold pool altered the evolution of subsequent convection. Whereas in observations and the 4-km forecast, a nearly stationary MCS developed parallel to, but displaced from, the supercell’s cold pool, the higher-resolution simulations instead had a faster-moving squall line that produced less rainfall. Although the degradation of convective forecasts at higher resolution is probably unusual and appears sensitive to the choice of boundary layer parameterization, these findings demonstrate that how numerical models treat boundary layer processes at different grid spacings can, in some cases, have profound influences on predictions of high-impact weather.

2015 ◽  
Vol 15 (1) ◽  
pp. 199-290 ◽  
Author(s):  
C. L. Ryder ◽  
J. B. McQuaid ◽  
C. Flamant ◽  
R. Washington ◽  
H. E. Brindley ◽  
...  

Abstract. The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.


2015 ◽  
Vol 15 (14) ◽  
pp. 8479-8520 ◽  
Author(s):  
C. L. Ryder ◽  
J. B. McQuaid ◽  
C. Flamant ◽  
P. D. Rosenberg ◽  
R. Washington ◽  
...  

Abstract. The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse-mode size distributions and AERONET (AERosol Robotic NETwork) sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.


Author(s):  
John M. Peters ◽  
Daniel R. Chavas

AbstractIt is often assumed in parcel theory calculations, numerical models, and cumulus parameterizations that moist static energy (MSE) is adiabatically conserved. However, the adiabatic conservation of MSE is only approximate because of the assumption of hydrostatic balance. Two alternative variables are evaluated here: MSE −IB and MSE +KE, wherein IB is the path integral of buoyancy (B) and KE is kinetic energy. Both of these variables relax the hydrostatic assumption and are more precisely conserved than MSE. This article quantifies the errors that result from assuming that the aforementioned variables are conserved in large eddy simulations (LES) of both disorganized and organized deep convection. Results show that both MSE −IB and MSE +KE better predict quantities along trajectories than MSE alone. MSE −IB is better conserved in isolated deep convection, whereas MSE −IB and MSE +KE perform comparably in squall line simulations. These results are explained by differences between the pressure perturbation behavior of squall lines and isolated convection. Errors in updraft B diagnoses are universally minimized when MSE−IB is assumed to be adiabatically conserved, but only when moisture dependencies of heat capacity and temperature dependency of latent heating are accounted for. When less accurate latent heat and heat capacity formulae were used, MSE−IB yielded poorer B predictions than MSE due to compensating errors. Our results suggest that various applications would benefit from using either MSE −IB or MSE +KE instead of MSE with properly formulated heat capacities and latent heats.


2014 ◽  
Vol 14 (2) ◽  
pp. 609-627 ◽  
Author(s):  
C. A. Klich ◽  
H. E. Fuelberg

Abstract. We use the Weather Research and Forecasting with Chemistry (WRF-Chem) online chemical transport model to simulate a middle latitude cyclone in East Asia at three different horizontal resolutions (45, 15, and 5 km grid spacing). The cyclone contains a typical warm conveyor belt (WCB) with an embedded squall line that passes through an area having large surface concentrations (> 400 ppbv) of carbon monoxide (CO). Model output from WRF-Chem is used to compare differences between the large-scale CO vertical transport by the WCB (the 45 km simulation) with the smaller-scale transport due to its convection (the 5 km simulation). Forward trajectories are calculated from WRF-Chem output using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. At 45 km grid spacing, the WCB exhibits gradual ascent, lofting surface CO to 6–7 km. Upon reaching the warm front, the WCB and associated CO ascend more rapidly and later turn eastward over the Pacific Ocean. Convective transport at 5 km resolution with explicitly resolved convection occurs much more rapidly, with surface CO lofted to altitudes greater than 10 km in 1 h or less. We also compute CO vertical mass fluxes over specified areas and times to compare differences in transport due to the different grid spacings. Upward CO flux exceeds 110 000 t h−1 in the domain with explicit convection when the squall line is at peak intensity, while fluxes from the two coarser resolutions are an order of magnitude smaller. Specific areas of interest within the 5 km domain are defined to compare the magnitude of convective transport to that within the entire 5 km region. Although convection encompasses only a small portion of the 5 km domain, it is responsible for ~40% of the upward CO transport. We also examine the vertical transport due to a short wave trough and its associated area of convection, not related to the cyclone, that lofts CO to the upper troposphere. Results indicate that fine-scale resolution with explicitly resolved convection is important when assessing the vertical transport of surface emissions in areas of deep convection.


2019 ◽  
Vol 148 (1) ◽  
pp. 289-311 ◽  
Author(s):  
Adam Varble ◽  
Hugh Morrison ◽  
Edward Zipser

Abstract Simulations of a squall line observed on 20 May 2011 during the Midlatitude Continental Convective Clouds Experiment (MC3E) using 750- and 250-m horizontal grid spacing are performed. The higher-resolution simulation has less upshear-tilted deep convection and a more elevated rear inflow jet than the coarser-resolution simulation in better agreement with radar observations. A stronger cold pool eventually develops in the 250-m run; however, the more elevated rear inflow counteracts the cold pool circulation to produce more upright convective cores relative to the 750-m run. The differing structure in the 750-m run produces excessive midlevel front-to-rear detrainment, reinforcing excessive latent cooling and rear inflow descent at the rear of the stratiform region in a positive feedback. The contrasting mesoscale circulations are connected to early stage deep convective draft differences in the two simulations. Convective downdraft condensate mass, latent cooling, and downward motion all increase with downdraft area similarly in both simulations. However, the 750-m run has a relatively greater number of wide and fewer narrow downdrafts than the 250-m run averaged to the same 750-m grid, a consequence of downdrafts being under-resolved in the 750-m run. Under-resolved downdrafts in the 750-m run are associated with under-resolved updrafts and transport mid–upper-level zonal momentum downward to low levels too efficiently in the early stage deep convection. These results imply that under-resolved convective drafts in simulations may vertically transport air too efficiently and too far vertically, potentially biasing buoyancy and momentum distributions that impact mesoscale convective system evolution.


2017 ◽  
Vol 145 (8) ◽  
pp. 3179-3201 ◽  
Author(s):  
Benjamin T. Blake ◽  
David B. Parsons ◽  
Kevin R. Haghi ◽  
Stephen G. Castleberry

Previous studies have documented a nocturnal maximum in thunderstorm frequency during the summer across the central United States. Forecast skill for these systems remains relatively low and the explanation for this nocturnal maximum is still an area of active debate. This study utilized the WRF-ARW Model to simulate a nocturnal mesoscale convective system that occurred over the southern Great Plains on 3–4 June 2013. A low-level jet transported a narrow corridor of air above the nocturnal boundary layer with convective instability that exceeded what was observed in the daytime boundary layer. The storm was elevated and associated with bores that assisted in the maintenance of the system. Three-dimensional variations in the system’s structure were found along the cold pool, which were examined using convective system dynamics and wave theory. Shallow lifting occurred on the southern flank of the storm. Conversely, the southeastern flank had deep lifting, with favorable integrated vertical shear over the layer of maximum CAPE. The bore assisted in transporting high-CAPE air toward its LFC, and the additional lifting by the density current allowed for deep convection to occur. The bore was not coupled to the convective system and it slowly pulled away, while the convection remained in phase with the density current. These results provide a possible explanation for how convection is maintained at night in the presence of a low-level jet and a stable boundary layer, and emphasize the importance of the three-dimensionality of these systems.


2006 ◽  
Vol 134 (10) ◽  
pp. 2772-2792 ◽  
Author(s):  
George H. Bryan ◽  
Jason C. Knievel ◽  
Matthew D. Parker

Abstract The authors evaluate whether the structure and intensity of simulated squall lines can be explained by “RKW theory,” which most specifically addresses how density currents evolve in sheared environments. In contrast to earlier studies, this study compares output from four numerical models, rather than from just one. All of the authors’ simulations support the qualitative application of RKW theory, whereby squall-line structure is primarily governed by two effects: the intensity of the squall line’s surface-based cold pool, and the low- to midlevel environmental vertical wind shear. The simulations using newly developed models generally support the theory’s quantitative application, whereby an optimal state for system structure also optimizes system intensity. However, there are significant systematic differences between the newer numerical models and the older model that was originally used to develop RKW theory. Two systematic differences are analyzed in detail, and causes for these differences are proposed.


2018 ◽  
Vol 75 (4) ◽  
pp. 1243-1269 ◽  
Author(s):  
Kelly Lombardo ◽  
Tristan Kading

Abstract Inland squall lines respond to the stable marine atmospheric boundary layer (MABL) as they move toward a coastline and offshore. As a storm’s cold pool collides with the marine layer, characteristics of both determine the resulting convective forcing mechanism over the stable layer and storm characteristics. Idealized numerical experiments exploring a parameter space of MABL characteristics show that the postcollision forcing mechanism is determined by the buoyancy of the cold pool relative to the MABL. When the outflow is less buoyant, storms are forced by a cold pool within the marine environment. When the buoyancies are equivalent, a hybrid cold pool–internal gravity wave develops after the collision. The collision between a cold pool and less buoyant MABL initiates internal waves along the stable layer, regardless of MABL depth. These waves are inefficient at lifting air into the storm, and ascent from the trailing cold pool is needed to support deep convection. Storm intensity decreases with deeper and less buoyant MABLs, in part due to the reduction in elevated instability. Precipitation is enhanced just prior to the collision between a storm and the deepest marine layers. Storms modify their environment downstream, leading to the development of a moist adiabatic unstable layer and a lowering of the level of free convection (LFC) to below the top of the deepest marine layer. An MABL moving as a sea breeze into the storm-modified air successfully lifts parcels to the new LFC, generating convective towers ahead of the squall line. This mechanism may contribute to increased coastal flash flooding risks during observed events.


2008 ◽  
Vol 89 (1) ◽  
pp. 57-74 ◽  
Author(s):  
R. Damiani ◽  
J. Zehnder ◽  
B. Geerts ◽  
J. Demko ◽  
S. Haimov ◽  
...  

The finescale structure and dynamics of cumulus, evolving from shallow to deep convection, and the accompanying changes in the environment and boundary layer over mountainous terrain were the subjects of a field campaign in July–August 2006. Few measurements exist of the transport of boundary layer air into the deep troposphere by the orographic toroidal circulation and orographic convection. The campaign was conducted over the Santa Catalina Mountains in southern Arizona, a natural laboratory to study convection, given the spatially and temporally regular development of cumulus driven by elevated heating and convergent boundary layer flow. Cumuli and their environment were sampled via coordinated observations from the surface, radiosonde balloons, and aircraft, along with airborne radar data and stereophotogrammetry from two angles. The collected dataset is expected to yield new insights in the boundary layer processes leading to orographic convection, in the cumulus-induced transport of boundary layer air into the troposphere, and in fundamental cumulus dynamics. This article summarizes the motivations, objectives, experimental strategies, preliminary findings, and the potential research paths stirred by the project.


2007 ◽  
Vol 64 (4) ◽  
pp. 1249-1266 ◽  
Author(s):  
George H. Bryan ◽  
Richard Rotunno ◽  
J. Michael Fritsch

Abstract In high-resolution numerical simulations (using horizontal grid spacing less than ∼1 km), the convective region of squall lines will sometimes overturn as quasi-horizontal convective rolls. The authors study one case in detail using output from a simulation with 125-m grid spacing. The rolls have an average spacing of 3 km and are aligned parallel to the vertical wind shear. Individual convective cells often have long-lived, undiluted cores that entrain primarily on the sides of the rolls (i.e., between the roll updraft and downdraft). The following set of conditions is proposed for obtaining roll overturning: the formation of a moist absolutely unstable layer (MAUL); vertical shear of the horizontal wind within the MAUL; an environment without large-amplitude perturbations; and quasi-horizontal flow over the squall line’s surface-based cold pool. Further insight is gained through a series of more idealized simulations wherein a specified MAUL is perturbed by analytic potential temperature perturbations. These simulations confirm classical studies based on linear analysis because the smallest perturbations grow fastest (with the exception of the very smallest scales that are affected by diffusion). The results also confirm that, with shear, updrafts oriented across the shear vector are inhibited by the shear. An explanation for the ∼3-km roll spacing also emerges from these simulations. The argument focuses on the perturbations that exist in the cold pool underneath the MAUL; they induce pressure fields that extend upward into the overlying MAUL. The perturbations with large horizontal scale have pressure fields that extend farther vertically and with a greater amplitude, and thus are more effective at initiating motions in the overlying MAUL. The convective scale that ultimately emerges within the MAUL is somewhere between two scales, whereby comparatively large scales are perturbed more strongly by perturbations in the cold pool, but the comparatively small scales grow faster.


Sign in / Sign up

Export Citation Format

Share Document