scholarly journals The Relationship between Spatial Variations in the Structure of Convective Bursts and Tropical Cyclone Intensification as Determined by Airborne Doppler Radar

2018 ◽  
Vol 146 (3) ◽  
pp. 761-780 ◽  
Author(s):  
Joshua B. Wadler ◽  
Robert F. Rogers ◽  
Paul D. Reasor

Abstract The relationship between radial and azimuthal variations in the composite characteristics of convective bursts (CBs), that is, regions of the most intense upward motion in tropical cyclones (TCs), and TC intensity change is examined using NOAA P-3 tail Doppler radar. Aircraft passes collected over a 13-yr period are examined in a coordinate system rotated relative to the deep-layer vertical wind shear vector and normalized by the low-level radius of maximum winds (RMW). The characteristics of CBs are investigated to determine how the radial and azimuthal variations of their structures are related to hurricane intensity change. In general, CBs have elevated reflectivity just below the updraft axis, enhanced tangential wind below and radially outward of the updraft, enhanced vorticity near the updraft, and divergent radial flow at the top of the updraft. When examining CB structure by shear-relative quadrant, the downshear-right (upshear left) region has updrafts at the lowest (highest) altitudes and weakest (strongest) magnitudes. When further stratifying by intensity change, the greatest differences are seen upshear. Intensifying storms have updrafts on the upshear side at a higher altitude and stronger magnitude than steady-state storms. This distribution provides a greater projection of diabatic heating onto the azimuthal mean, resulting in a more efficient vortex spinup. For variations based on radial location, CBs located inside the RMW show stronger updrafts at a higher altitude for intensifying storms. Stronger and deeper updrafts inside the RMW can spin up the vortex through greater angular momentum convergence and a more efficient vortex response to the diabatic heating.

2009 ◽  
Vol 137 (2) ◽  
pp. 603-631 ◽  
Author(s):  
Paul D. Reasor ◽  
Matthew D. Eastin ◽  
John F. Gamache

Abstract The structure and evolution of rapidly intensifying Hurricane Guillermo (1997) is examined using airborne Doppler radar observations. In this first part, the low-azimuthal-wavenumber component of the vortex is presented. Guillermo’s intensification occurred in an environmental flow with 7–8 m s−1 of deep-layer vertical shear. As a consequence of the persistent vertical shear forcing of the vortex, convection was observed primarily in the downshear left quadrant of the storm. The greatest intensification during the ∼6-h Doppler observation period coincided with the formation and cyclonic rotation of several particularly strong convective bursts through the left-of-shear semicircle of the eyewall. Some of the strongest convective bursts were triggered by azimuthally propagating low-wavenumber vorticity asymmetries. Mesoscale budget analyses of axisymmetric angular momentum and relative vorticity within the eyewall are presented to elucidate the mechanisms contributing to Guillermo’s structural evolution during this period. The observations support a developing conceptual model of the rapidly intensifying, vertically sheared hurricane in which shear-forced mesoscale ascent in the downshear eyewall is modulated by internally generated vorticity asymmetries yielding episodes of anomalous intensification.


2012 ◽  
Vol 140 (2) ◽  
pp. 425-444 ◽  
Author(s):  
Paul D. Reasor ◽  
Matthew D. Eastin

This paper examines the structure and evolution of a mature tropical cyclone in vertical wind shear (VWS) using airborne Doppler radar observations of Hurricane Guillermo (1997). In Part I, the modulation of eyewall convection via the rotation of vorticity asymmetries through the downshear-left quadrant was documented during rapid intensification. Here, the focus is on the relationship between VWS, vortex tilt, and associated asymmetry within the tropical cyclone core region during two separate observation periods. A method for estimating local VWS and vortex tilt from radar datasets is further developed, and the resulting vertical structure and its evolution are subjected to statistical confidence tests. Guillermo was a highly resilient vortex, evidenced by its small tilt magnitude relative to the horizontal scale of the vortex core. The deep-layer tilt was statistically significant, oriented on average ~60° left of shear. Large-scale vorticity and thermal asymmetries oriented along the tilt direction support a response of Guillermo to shear forcing that is consistent with balanced dynamics. The time-averaged vertical motion asymmetry within the eyewall exhibited maximum ascent values ~40° left of the deep-layer shear, or in this case, right of the deep-layer tilt. The observation-based analysis of Guillermo’s interaction with VWS confirms findings of recent theoretical and numerical studies, and serves as the basis for a more comprehensive investigation of VWS and tropical cyclone intensity change using a recently constructed multistorm database of Doppler radar analyses.


Author(s):  
Peter M. Finocchio ◽  
Rosimar Rios-Berrios

AbstractThis study describes a set of idealized simulations in which westerly vertical wind shear increases from 3 to 15 m s−1 at different stages in the lifecycle of an intensifying tropical cyclone (TC). The TC response to increasing shear depends on the intensity and size of the TC’s tangential wind field when shear starts to increase. For a weak tropical storm, increasing shear decouples the vortex and prevents intensification. For Category 1 and stronger storms, increasing shear causes a period of weakening during which vortex tilt increases by 10–30 km before the TCs reach a near-steady Category 1–3 intensity at the end of the simulations. TCs exposed to increasing shear during or just after rapid intensification tend to weaken the most. Backward trajectories reveal a lateral ventilation pathway between 8–11 km altitude that is capable of reducing equivalent potential temperature in the inner core of these TCs by nearly 2°C. In addition, these TCs exhibit large reductions in diabatic heating inside the radius of maximum winds (RMW) and lower-entropy air parcels entering downshear updrafts from the boundary layer, which further contributes to their substantial weakening. The TCs exposed to increasing shear after rapid intensification and an expansion of the outer wind field reach the strongest near-steady intensity long after the shear increases because of strong vertical coupling that prevents the development of large vortex tilt, resistance to lateral ventilation through a deep layer of the middle troposphere, and robust diabatic heating within the RMW.


2017 ◽  
Vol 56 (10) ◽  
pp. 2883-2901 ◽  
Author(s):  
Zifeng Yu ◽  
Yuqing Wang ◽  
Haiming Xu ◽  
Noel Davidson ◽  
Yandie Chen ◽  
...  

AbstractTRMM satellite 3B42 rainfall estimates for 133 landfalling tropical cyclones (TCs) over China during 2001–15 are used to examine the relationship between TC intensity and rainfall distribution. The rain rate of each TC is decomposed into axisymmetric and asymmetric components. The results reveal that, on average, axisymmetric rainfall is closely related to TC intensity. Stronger TCs have higher averaged peak axisymmetric rain rates, more averaged total rain, larger averaged rain areas, higher averaged rain rates, higher averaged amplitudes of the axisymmetric rainfall, and lower amplitudes of wavenumbers 1–4 relative to the total rainfall. Among different TC intensity change categories, rapidly decaying TCs show the most rapid decrease in both the total rainfall and the axisymmetric rainfall relative to the total rain. However, the maximum total rain, maximum rain area, and maximum rain rate are not absolutely dependent on TC intensity, suggesting that stronger TCs do not have systematically higher maximum rain rates than weaker storms. Results also show that the translational speed of TCs has little effect on the asymmetric rainfall distribution in landfalling TCs. The maximum rainfall of both the weaker and stronger TCs is generally located downshear to downshear left. However, when environmental vertical wind shear (VWS) is less than 5 m s−1, the asymmetric rainfall maxima are more frequently located upshear and onshore, suggesting that in weak VWS environments the coastline could have a significant effect on the rainfall asymmetry in landfalling TCs.


2018 ◽  
Vol 146 (9) ◽  
pp. 2799-2817 ◽  
Author(s):  
Udai Shimada ◽  
Takeshi Horinouchi

Abstract Strong vertical wind shear produces asymmetries in the eyewall structure of a tropical cyclone (TC) and is generally a hostile environment for TC intensification. Typhoon Noul (2015), however, reintensified and formed a closed eyewall despite 200–850-hPa vertical shear in excess of 11 m s−1. Noul’s reintensification and eyewall formation in strong shear were examined by using Doppler radar and surface observations. The evolution of the azimuthal-mean structure showed that the tangential wind at 2-km altitude increased from 30 to 45 m s−1 in only 5 h. During the first half of the reintensification, the azimuthal-mean inflow penetrated into the ~40-km radius, well inside the radius of maximum wind (RMW), at least below 4-km altitude, and reflectivity inside the RMW increased. As for the asymmetric evolution, vigorous convection, dominated by an azimuthal wavenumber-1 asymmetry, occurred in the downshear-left quadrant when shear started to increase and then moved upshear. A mesovortex formed inside the convective asymmetry on the upshear side. The direction of vortex tilt between the 1- and 5-km altitudes rotated cyclonically from the downshear-left to the upshear-right quadrant as the vortex was vertically aligned. In conjunction with the alignment, the amplitude of the wavenumber-1 convective asymmetry decreased and a closed eyewall formed. These features are consistent with the theory that a vortex can be vertically aligned through upshear precession. The analysis results suggest that the vortex tilt, vigorous convection, and subsequent intensification were triggered by the increase in shear in a convectively favorable environment.


2005 ◽  
Vol 133 (11) ◽  
pp. 3345-3367 ◽  
Author(s):  
Katja Friedrich ◽  
David E. Kingsmill ◽  
Carl R. Young

Abstract Multiple-Doppler radar and rawinsonde data are used to examine misocyclone characteristics along gust fronts observed during the Convection and Precipitation/Electrification (CaPE) project in Florida. The objective of this study is to investigate the observational representativeness of previous numerical simulations of misocyclones by employing a consistent analysis strategy to 11 gust fronts observed in the same region. The investigation focuses on the intensity range of misocyclones and their organization along gust fronts; the relationship between misocyclone intensity and horizontal wind shear, vertical wind shear, and static stability; and the relationship between misocyclones and convection initiation. The intensity of misocyclones, as indicated by the maximum values of vertical vorticity, varied from 2.8 × 10−3 to 13.9 × 10−3 s−1, although all but one case exhibited values less than 6.4 × 10−3 s−1. Organized misocyclone patterns were only found along small segments of gust fronts. Within those segments misocyclones were spaced between 3 and 7 km. Results show that the intensity of misocyclones was most closely related to the strength of horizontal wind shear across the gust front. The relationship between misocyclone intensity and vertical wind shear and static stability was not as clear. Although convection was initiated along the gust front in 7 of the 11 cases, those regions were not collocated with or in close proximity to misocyclones.


Author(s):  
Benjamin A. Schenkel ◽  
Michael Coniglio ◽  
Roger Edwards

AbstractThis work investigates how the relationship between tropical cyclone (TC) tornadoes and ambient (i.e., synoptic-scale) deep-tropospheric (i.e., 850–200-hPa) vertical wind shear (VWS) varies between coastal and inland environments. Observed U.S. TC tornado track data are used to study tornado frequency and location, while dropsonde and radiosonde data are used to analyze convective-scale environments. To study the variability in the TC tornado-VWS relationship, these data are categorized by both: 1) their distance from the coast and 2) reanalysis-derived VWS magnitude. The analysis shows that TCs produce coastal tornadoes regardless of VWS magnitude primarily in their downshear sector, with tornadoes most frequently occurring in strongly sheared cases. Inland tornadoes, including the most damaging cases, primarily occur in strongly sheared TCs within the outer radii of the downshear right quadrant. Consistent with these patterns, drop-sondes and coastal radiosondes show that the downshear right quadrant of strongly sheared TCs has the most favorable combination of enhanced lower-tropospheric near-surface speed shear and veering, and reduced lower-tropospheric thermodynamic stability for tornadic supercells. Despite the weaker intensity further inland, these kinematic conditions are even more favorable in inland environments within the downshear right quadrant of strongly sheared TCs, due to the strengthened veering of the ambient winds and the lack of changes in the TC outer tangential wind strength. The constructive superposition of the ambient and TC winds may be particularly important to inland tornado occurrence. Together, these results will allow forecasters to anticipate how the frequency and location of tornadoes and, more broadly, convection may change as TCs move inland.


2015 ◽  
Vol 143 (9) ◽  
pp. 3434-3453 ◽  
Author(s):  
Yuqing Wang ◽  
Yunjie Rao ◽  
Zhe-Min Tan ◽  
Daria Schönemann

Abstract The effect of vertical wind shear (VWS) between different pressure levels on TC intensity change is statistically analyzed based on the best track data of tropical cyclones (TCs) in the western North Pacific (WNP) from the Joint Typhoon Warning Center (JTWC) and the ECMWF interim reanalysis (ERA-Interim) data during 1981–2013. Results show that the commonly used VWS measure between 200 and 850 hPa is less representative of the attenuating deep-layer shear effect than that between 300 and 1000 hPa. Moreover, the authors find that the low-level shear between 850 (or 700) and 1000 hPa is more negatively correlated with TC intensity change than any deep-layer shear during the active typhoon season, whereas deep-layer shear turns out to be more influential than low-level shear during the remaining less active seasons. Further analysis covering all seasons exhibits that a TC has a better chance to intensify than to decay when the deep-layer shear is lower than 7–9 m s−1 and the low-level shear is below 2.5 m s−1. The probability for TCs to intensify and undergo rapid intensification (RI) increases with decreasing VWS and increasing sea surface temperature (SST). TCs moving at slow translational speeds (less than 3 m s−1) intensify under relatively weaker VWS than TCs moving at intermediate translational speeds (3–8 m s−1). The probability of RI becomes lower than that of rapid decaying (RD) when the translational speed is larger than 8 m s−1. Most TCs tend to decay when the translational speed is larger than 12 m s−1 regardless of the shear condition.


2012 ◽  
Vol 69 (11) ◽  
pp. 3128-3146 ◽  
Author(s):  
Stephen R. Guimond ◽  
Jon M. Reisner

Abstract In Part I of this study, a new algorithm for retrieving the latent heat field in tropical cyclones from airborne Doppler radar was presented and fields from rapidly intensifying Hurricane Guillermo (1997) were shown. In Part II, the usefulness and relative accuracy of the retrievals is assessed by inserting the heating into realistic numerical simulations at 2-km resolution and comparing the generated wind structure to the radar analyses of Guillermo. Results show that using the latent heat retrievals as forcing produces very low intensity and structure errors (in terms of tangential wind speed errors and explained wind variance) and significantly improves simulations relative to a predictive run that is highly calibrated to the latent heat retrievals by using an ensemble Kalman filter procedure to estimate values of key model parameters. Releasing all the heating/cooling in the latent heat retrieval results in a simulation with a large positive bias in Guillermo’s intensity that motivates the need to determine the saturation state in the hurricane inner-core retrieval through a procedure similar to that described in Part I of this study. The heating retrievals accomplish high-quality structure statistics by forcing asymmetries in the wind field with the generally correct amplitude, placement, and timing. In contrast, the latent heating fields generated in the predictive simulation contain a significant bias toward large values and are concentrated in bands (rather than discrete cells) stretched around the vortex. The Doppler radar–based latent heat retrievals presented in this series of papers should prove useful for convection initialization and data assimilation to reduce errors in numerical simulations of tropical cyclones.


2017 ◽  
Vol 33 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Stephanie N. Stevenson ◽  
Kristen L. Corbosiero ◽  
Mark DeMaria ◽  
Jonathan L. Vigh

Abstract This study seeks to reconcile discrepancies between previous studies analyzing the relationship between lightning and tropical cyclone (TC) intensity change. Inner-core lightning bursts (ICLBs) were identified from 2005 to 2014 in North Atlantic (NA) and eastern North Pacific (ENP) TCs embedded in favorable environments (e.g., vertical wind shear ≤ 10 m s−1; sea surface temperatures ≥ 26.5°C) using data from the World Wide Lightning Location Network (WWLLN) transformed onto a regular grid with 8-km grid spacing to replicate the expected nadir resolution of the Geostationary Lightning Mapper (GLM). Three hypothesized factors that could impact the 24-h intensity change after a burst were tested: 1) prior intensity change, 2) azimuthal burst location, and 3) radial burst location. Most ICLBs occurred in weak TCs (tropical depressions and tropical storms), and most TCs intensified (remained steady) 24 h after burst onset in the NA (ENP). TCs were more likely to intensify 24 h after an ICLB if they were steady or intensifying prior to burst onset. Azimuthally, 75% of the ICLBs initiated downshear, with 92% of downshear bursts occurring in TCs that remained steady or intensified. Of the ICLBs that initiated or rotated upshear, 2–3 times more were associated with TC intensification than weakening, consistent with recent studies finding more symmetric convection in intensifying TCs. The radial burst location relative to the radius of maximum wind (RMW) provided the most promising result: TCs with an ICLB inside (outside) the RMW were associated with intensification (weakening).


Sign in / Sign up

Export Citation Format

Share Document