Why does convection weaken over Sumatra Island in an active phase of the MJO?

Abstract This study investigated the diurnal cycle of convection over Sumatra Island in an active phase of the Madden-Julian Oscillation (MJO) during the Pre-Years of the Maritime Continent (YMC) observation campaign in December 2015 based on in-situ and satellite observations and a convection-permitting numerical model. Observations suggest that before the active phase of the MJO in early December, convection occurred frequently over the island during the afternoon and at midnight. By contrast, during the active phase of the MJO in mid-December, afternoon convection over the island was delayed and suppressed, and midnight convection was suppressed. Numerical experiments also successfully replicated the main features of the observed modulations. In general, during the active phase of the MJO, the troposphere became drier in the Sumatra region. While the clouds reduced the solar radiation over the land, the sea breeze was also found to be delayed and weakened. As a result, the afternoon convection initiation was delayed and weakened. Further analyses suggested that the sea breeze was weakened mainly due to the orographic stagnation effect rather than the slightly reduced land-sea temperature contrast. On the other hand, the increased stratiform-anvil clouds induced the anomalous evaporative cooling in the mid-troposphere and generated island-scale subsidence during the nighttime, which finally led to the suppression of inland convection. Overall, our study reveals the modulation of diurnal convection over Sumatra Island by an active phase of the MJO and also shows the potential role of land-sea interaction in convection initiation and maintenance.

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 824
Author(s):  
Przemysław J. Jodłowski ◽  
Izabela Czekaj ◽  
Patrycja Stachurska ◽  
Łukasz Kuterasiński ◽  
Lucjan Chmielarz ◽  
...  

The objective of our study was to prepare Y-, USY- and ZSM-5-based catalysts by hydrothermal synthesis, followed by copper active-phase deposition by either conventional ion-exchange or ultrasonic irradiation. The resulting materials were characterized by XRD, BET, SEM, TEM, Raman, UV-Vis, monitoring ammonia and nitrogen oxide sorption by FT-IR and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). XRD data confirmed the purity and structure of the Y/USY or ZSM-5 zeolites. The nitrogen and ammonia sorption results indicated that the materials were highly porous and acidic. The metallic active phase was found in the form of cations in ion-exchanged zeolites and in the form of nanoparticle metal oxides in sonochemically prepared catalysts. The latter showed full activity and high stability in the SCR deNOx reaction. The faujasite-based catalysts were fully active at 200–400 °C, whereas the ZSM-5-based catalysts reached 100% activity at 400–500 °C. Our in situ DRIFTS experiments revealed that Cu–O(NO) and Cu–NH3 were intermediates, also indicating the role of Brønsted sites in the formation of NH4NO3. Furthermore, the results from our experimental in situ spectroscopic studies were compared with DFT models. Overall, our findings suggest two possible mechanisms for the deNOx reaction, depending on the method of catalyst preparation (i.e., conventional ion-exchange vs. ultrasonic irradiation).


2015 ◽  
Vol 28 (20) ◽  
pp. 8093-8108 ◽  
Author(s):  
Cathryn E. Birch ◽  
Malcolm J. Roberts ◽  
Luis Garcia-Carreras ◽  
Duncan Ackerley ◽  
Michael J. Reeder ◽  
...  

Abstract There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.


2000 ◽  
Vol 11 (9) ◽  
pp. 2987-2998 ◽  
Author(s):  
Kelly P. Smith ◽  
Jeanne Bentley Lawrence

The Cajal (coiled) body (CB) is a structure enriched in proteins involved in mRNA, rRNA, and snRNA metabolism. CBs have been shown to interact with specific histone and snRNA gene loci. To examine the potential role of CBs in U2 snRNA metabolism, we used a variety of genomic and oligonucleotide probes to visualize in situ newly synthesized U2 snRNA relative to U2 loci and CBs. Results demonstrate that long spacer sequences between U2 coding repeats are transcribed, supporting other recent evidence that U2 transcription proceeds past the 3′ box. The presence of bright foci of this U2 locus RNA differed between alleles within the same nucleus; however, this did not correlate with the loci's association with a CB. Experiments with specific oligonucleotide probes revealed signal for preU2 RNA within CBs. PreU2 was also detected in the locus-associated RNA foci, whereas sequences 3′ of preU2 were found only in these foci, not in CBs. This suggests that a longer primary transcript is processed before entry into CBs. Although this work shows that direct contact of a U2 locus with a CB is not simply correlated with RNA at that locus, it provides the first evidence of new preU2 transcripts within CBs. We also show that, in contrast to CBs, SMN gems do not associate with U2 gene loci and do not contain preU2. Because other evidence indicates that preU2 is processed in the cytoplasm before assembly into snRNPs, results point to an involvement of CBs in modification or transport of preU2 RNA.


2019 ◽  
Author(s):  
Subhrangshu Mandal ◽  
Sabyasachi Bhattacharya ◽  
Chayan Roy ◽  
Moidu Jameela Rameez ◽  
Jagannath Sarkar ◽  
...  

ABSTRACTTo explore the potential role of tetrathionate in the sulfur cycle of marine sediments, the population ecology of tetrathionate-forming, oxidizing, and respiring microorganisms was revealed at 15-30 cm resolution along two, ∼3-m-long, cores collected from 530- and 580-mbsl water-depths of Arabian Sea, off India’s west coast, within the oxygen minimum zone (OMZ). Metagenome analysis along the two sediment-cores revealed widespread occurrence of the structural genes that govern these metabolisms; high diversity and relative-abundance was also detected for the bacteria known to render these processes. Slurry-incubation of the sediment-samples, pure-culture isolation, and metatranscriptome analysis, corroborated thein situfunctionality of all the three metabolic-types. Geochemical analyses revealed thiosulfate (0-11.1 μM), pyrite (0.05-1.09 wt %), iron (9232-17234 ppm) and manganese (71-172 ppm) along the two sediment-cores. Pyrites (via abiotic reaction with MnO2) and thiosulfate (via oxidation by chemolithotrophic bacteria prevalentin situ) are apparently the main sources of tetrathionate in this ecosystem. Tetrathionate, in turn, can be either converted to sulfate (via oxidation by the chemolithotrophs present) or reduced back to thiosulfate (via respiration by native bacteria); 0-2.01 mM sulfide present in the sediment-cores may also reduce tetrathionate abiotically to thiosulfate and elemental sulfur. Notably tetrathionate was not detectedin situ- high microbiological and geochemical reactivity of this polythionate is apparently instrumental in the cryptic nature of its potential role as a central sulfur cycle intermediate. Biogeochemical roles of this polythionate, albeit revealed here in the context of OMZ sediments, may well extend to the sulfur cycles of other geomicrobiologically-distinct marine sediment horizons.


2019 ◽  
Author(s):  
Subhrangshu Mandal ◽  
Sabyasachi Bhattacharya ◽  
Chayan Roy ◽  
Moidu Jameela Rameez ◽  
Jagannath Sarkar ◽  
...  

Abstract. To explore the potential role of tetrathionate in the sulfur cycle of marine sediments, the population ecology of tetrathionate-forming, oxidizing, and respiring microorganisms was revealed at 15–30 cm resolution along two, ~ 3-m-long, cores collected from 530- and 580-mbsl water-depths of Arabian Sea, off India’s west coast, within the oxygen minimum zone (OMZ). Metagenome analysis along the two sediment-cores revealed widespread occurrence of the structural genes that govern these metabolisms; high diversity and relative-abundance was also detected for the bacteria known to render these processes. Slurry-incubation of the sediment-samples, pure-culture isolation, and metatranscriptome analysis, corroborated the in situ functionality of all the three metabolic-types. Geochemical analyses revealed thiosulfate (0–11.1 µM), pyrite (0.05–1.09 wt %), iron (9232–17234 ppm) and manganese (71–172 ppm) along the two sediment-cores. Pyrites (via abiotic reaction with MnO2) and thiosulfate (via oxidation by chemolithotrophic bacteria prevalent in situ) are apparently the main sources of tetrathionate in this ecosystem. Tetrathionate, in turn, can be either converted to sulfate (via oxidation by the chemolithotrophs present) or reduced back to thiosulfate (via respiration by native bacteria); 0–2.01 mM sulfide present in the sediment-cores may also reduce tetrathionate abiotically to thiosulfate and elemental sulfur. Notably tetrathionate was not detected in situ – high microbiological and geochemical reactivity of this polythionate is apparently instrumental in the cryptic nature of its potential role as a central sulfur cycle intermediate. Biogeochemical roles of this polythionate, albeit revealed here in the context of OMZ sediments, may well extend to the sulfur cycles of other geomicrobiologically-distinct marine sediment horizons.


1997 ◽  
Vol 31 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Andrew Lloyd ◽  
Gavin Dixon ◽  
Xu Feng Huang ◽  
Phillip Ward ◽  
Stan Catts ◽  
...  

Objective:To highlight the potential role of molecular biological studies in examining the expression of genes of interest in brain tissue to elucidate the pathophysiological basis of the major psychoses. Method:To review the principles underlying the available techniques for expression studies. Results:Detection of messenger RNA by in situ hybridisation and quantitation by Northern analysis are powerful tools to detect abnormalities in gene expression in brain tissue. Conclusion:The availability of simple techniques to examine the expression of RNA and protein products of individual genes, including examination at the level of individual cells, offers a clear opportunity to define the molecular basis of the major psychoses.


2017 ◽  
Vol 30 (10) ◽  
pp. 3807-3828 ◽  
Author(s):  
Claire L. Vincent ◽  
Todd P. Lane

Abstract The Maritime Continent is one of the wettest regions on the planet and has been shown to be important for global budgets of heat and moisture. Convection in the region, however, varies on several interrelated scales, making it difficult to quantify the precipitation climate and understand the key processes. For example, the diurnal cycle in precipitation over the land varies substantially according to the phase of the Madden–Julian oscillation (MJO), and the diurnal precipitation cycle over the water is coupled to that over the land, in some cases for distances of over 1000 km from the coast. Here, a 10-yr austral summer climatology of diurnal and MJO-scale variations in rain rate over the land and sea over the Maritime Continent is presented. The climatology is based on mesoscale model simulations with a horizontal grid length of 4 km and satellite precipitation estimates. The amplitude of the observed diurnal precipitation cycle is shown to reach a maximum just prior to the MJO active phase, with a weaker secondary maximum after the MJO active phase. Although these two maxima also exist in the modeled diurnal precipitation cycle, there is less difference between the maxima before and after the MJO active phase than in the observations. The modeled sea-breeze circulation is also shown to possess approximately equal maxima just before and just after the MJO active period, suggesting that the asymmetry of the diurnal precipitation cycle about the MJO active period is related more to moisture availability than kinematic forcing.


Sign in / Sign up

Export Citation Format

Share Document