An Investigation of Summer Precipitation Simulated by the Canadian Regional Climate Model

2006 ◽  
Vol 134 (3) ◽  
pp. 919-932 ◽  
Author(s):  
Yanjun Jiao ◽  
Daniel Caya

Abstract In the present paper, a 5-yr baseline integration for the period 1987–91 was carried out over a Pan-Canadian domain to validate the performance of the third-generation Canadian Regional Climate Model (CRCM). The CRCM simulated the large-scale circulation over North America well; it also correctly captured the seasonal variability of surface temperature and reproduced the winter precipitation over North America realistically. However, the CRCM systematically overestimated the summer precipitation over the continent when compared with the observed values. Extensive experiments have been conducted to trace down the sources of error of summer precipitation. Particular attention has been given to the water-vapor-related physical parameterization processes such as the mass flux convection scheme in the CRCM. Experiments involving spectral nudging of the specific humidity toward the values of large-scale driving data enabled the authors to link overestimation with abundant water vapor accumulated in the lower boundary layer resulting from an excessive amount of moisture stored in the soil. A strong boundary layer mixing process from the third generation of the Canadian Atmospheric General Circulation Model was then implemented into the CRCM along with an adjustment to the soil water holding capacity. A final analysis of a 14-month experiment showed that these modifications significantly improved the simulation of summer precipitation over North America without adversely affecting the simulation of winter precipitation.

2008 ◽  
Vol 21 (5) ◽  
pp. 963-979 ◽  
Author(s):  
Yoo-Bin Yhang ◽  
Song-You Hong

Abstract This paper documents the sensitivity of the modeled evolution of the East Asian summer monsoon (EASM) to physical parameterization using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). To this end, perfect boundary condition experiments driven by analysis data are designed for August 2003 to investigate the individual role of the surface processes, boundary layer, and convection parameterization on the simulated monsoon. Also, 10-yr June–August (JJA) simulations from 1996 to 2005 are performed to evaluate the overall impacts of these revisions on the simulated EASM climatology. The one-month simulation for August 2003 reveals that the experiment with a realistic distribution of land use conditions and vegetation and smaller thermal roughness length simulates higher temperature and geopotential height. On the other hand, in the experiment with an improved boundary layer scheme, the rainfall amount is slightly decreased due to reduced vertical mixing. The simulation with revised subgrid-scale processes in the cumulus parameterization scheme reproduces a rainband over the subtropics, which is weakly simulated by the default package. The overall large-scale distribution from the experiment, which includes all three revised physics processes, shows the same direction as that of the revised convection run in the middle and upper troposphere, but is improved further when other newly enhanced processes are combined. These improvements are also achieved in a 10-yr summer simulation. It is distinct that the revised physics package improves the large-scale patterns by strengthening the intensity of the North Pacific high and reducing the intensity of the lower-level jet, which are critical components in the EASM. The general patterns of the interannual and intraseasonal variation of precipitation are also improved, in particular, over land.


2007 ◽  
Vol 8 (4) ◽  
pp. 738-757 ◽  
Author(s):  
Song Yang ◽  
S-H. Yoo ◽  
R. Yang ◽  
K. E. Mitchell ◽  
H. van den Dool ◽  
...  

Abstract This study employs the NCEP Eta Regional Climate Model to investigate the response of the model’s seasonal simulations of summer precipitation to high-frequency variability of soil moisture. Specifically, it focuses on the response of model precipitation and temperature over the U.S. Midwest and Southeast to imposed changes in the diurnal and synoptic variability of soil moisture in 1988 and 1993. High-frequency variability of soil moisture increases (decreases) precipitation in the 1988 drought (1993 flood) year in the central and southern-tier states, except along the Gulf Coast, but causes smaller changes in precipitation along the northern-tier states. The diurnal variability and synoptic variability of soil moisture produce similar patterns of precipitation change, indicating the importance of the diurnal cycle of land surface process. The increase (decrease) in precipitation is generally accompanied by a decrease (increase) in surface and lower-tropospheric temperatures, and the changes in precipitation and temperature are attributed to both the local effect of evaporation feedback and the remote influence of large-scale water vapor transport. The precipitation increase and temperature decrease in 1988 are accompanied by an increase in local evaporation and, more importantly, by an increase in the large-scale water vapor convergence into the Midwest and Southeast. Analogous but opposite-sign behavior occurs in 1993 (compared to 1988) in changes in precipitation, temperature, soil moisture, evaporation, and large-scale water vapor transport. Results also indicate that, in regions where the model simulates the diurnal cycle of soil moisture reasonably well, including this diurnal cycle in the simulations improves model performance. However, no notable improvement in model precipitation can be found in regions where the model fails to realistically simulate the diurnal variability of soil moisture.


2020 ◽  
Author(s):  
Danijel Belusic ◽  
Petter Lind ◽  
Oskar Landgren ◽  
Dominic Matte ◽  
Rasmus Anker Pedersen ◽  
...  

<p>Current literature strongly indicates large benefits of convection permitting models for subdaily summer precipitation extremes. There has been less insight about other variables, seasons and weather conditions. We examine new climate simulations over the Nordic region, performed with the HCLIM38 regional climate model at both convection permitting and coarser scales, searching for benefits of using convection permitting resolutions. The Nordic climate is influenced by the North Atlantic storm track and characterised by large seasonal contrasts in temperature and precipitation. It is also in rapid change, most notably in the winter season when feedback processes involving retreating snow and ice lead to larger warming than in many other regions. This makes the area an ideal testbed for regional climate models. We explore the effects of higher resolution and better reproduction of convection on various aspects of the climate, such as snow in the mountains, coastal and other thermal circulations, convective storms and precipitation with a special focus on extreme events. We investigate how the benefits of convection permitting models change with different variables and seasons, and also their sensitivity to different circulation regimes.</p>


2021 ◽  
Author(s):  
Zhongfeng Xu ◽  
Ying Han ◽  
Chi-Yung Tam ◽  
Zong-Liang Yang ◽  
Congbin Fu

Abstract Dynamical downscaling is the most widely used physics-based approach to obtaining fine-scale weather and climate information. However, traditional dynamical downscaling approaches are often degraded by biases in the large-scale forcing. To improve the confidence in future projection of regional climate, we used a novel bias-corrected global climate model (GCM) dataset to drive a regional climate model (RCM) over the period for 1980–2014. The dynamical downscaling simulations driven by the original GCM dataset (MPI-ESM1-2-HR model) (hereafter WRF_GCM), the bias-corrected GCM (hereafter WRF_GCMbc) are validated against that driven by the European Centre for Medium-Range Weather Forecasts Reanalysis 5 dataset (hereafter WRF_ERA5), respectively. The results suggest that, compared with the WRF_GCM, the WRF_GCMbc shows a 50–90% reduction in RMSEs of the climatological mean of downscaled variables (e.g. temperature, precipitation, wind, relative humidity). Similarly, the WRF_GCMbc also shows improved performance in simulating the interannual variability of downscaled variables. The RMSEs of interannual variances of downscaled variables are reduced by 30–60%. An EOF analysis suggests that the WRF_GCMbc can successfully reproduce the dominant tri-pole mode in the interannual summer precipitation variations observed over eastern China as opposed to the mono-pole precipitation pattern simulated by the WRF_GCM. Such improvements are primarily caused by the correct simulation of the location of the western North Pacific subtropical high by the WRF_GCMbc due to the GCM bias correction.


2020 ◽  
Author(s):  
Yaqiong Lu ◽  
Shan Lin

<p>Indian agriculture equipped the most intensive irrigation worldwide and still maintains an increasing trend of irrigation due to the decreasing of Indian summer monsoon rainfall. Irrigation could largely increase soil moisture and evapotranspiration while cooling air temperature. Several researches showed that Indian irrigation did not significantly contribute to local precipitation, so will the Indian irrigation affect the adjacent regions, such as the Tibetan Plateau is unclear. Here, we set up 10-years simulations for two nested domains (30-10km) over the South-East Asia to quantify the irrigation effects with a coupled dynamic crop model and regional climate model (WRF4.0-CLM4Crop). Besides the numeric simulations, we adopted a water vapor back trajectory tracking method to track where the evaporation from the irrigated land fall as precipitation. Our preliminary results showed that Indian irrigation did not significantly affects temperature, sensible heat flux, and latent heat flux over the Tibetan Plateau, but the water vapor from Indian irrigation contributed to 10% of the summer precipitation on the Tibetan Plateau.</p>


2008 ◽  
Vol 136 (11) ◽  
pp. 4168-4187 ◽  
Author(s):  
Yanjun Jiao ◽  
Colin Jones

Abstract This paper presents results from the Canadian Regional Climate Model (CRCM) contribution to the Global Energy and Water Cycle Experiment (GEWEX) Pacific Cross-section Intercomparison Project. This experiment constitutes a simulation of stratocumulus, trade cumulus, and deep convective transitions along a cross section in the tropical Pacific. The simulated seasonal mean cloud and convection are compared between an original version of CRCM (CRCM4) and a modified version (CRCMM) with refined parameterizations. Results are further compared against available observations and reanalysis data. The specific parameterization refinements touch upon the triggering and closure of shallow convection, the cloud and updraft characteristics of deep convection, the parameterization of large-scale cloud fraction, the calculation of the eddy diffusivity in the boundary layer, and the evaporation of falling large-scale precipitation. CRCMM shows substantial improvement in many aspects of the simulated seasonal mean cloud, convection, and precipitation over the tropical Pacific, CRCMM-simulated total column water vapor, total cloud cover, and precipitation are in better agreement with observations than in the original CRCM4 model. The maximum frequency of the shallow convection shifts from the ITCZ region in CRCM4 to the subtropics in CRCMM; accordingly, excessive cloud in the shallow cumulus region in CRCM4 is greatly diminished. Finally, CRCMM better simulates the vertical structure of relative humidity, cloud cover, and vertical velocity, at least when compared to the 40-yr ECMWF Re-Analysis. Analyses of sensitivity experiments assessing specific effects of individual parameterization changes indicate that the modification to the eddy diffusivity in the boundary layer and changes to deep convection contribute most significantly to the overall model improvements.


2015 ◽  
Vol 28 (12) ◽  
pp. 4997-5014 ◽  
Author(s):  
Clara Orbe ◽  
Paul A. Newman ◽  
Darryn W. Waugh ◽  
Mark Holzer ◽  
Luke D. Oman ◽  
...  

Abstract The first climatology of airmass origin in the Arctic is presented in terms of rigorously defined airmass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM) reveal that the majority of air in the Arctic below 700 mb last contacted the PBL poleward of 60°N. By comparison, 62% (±0.8%) of the air above 700 mb originates over Northern Hemisphere midlatitudes (i.e., “midlatitude air”). Seasonal variations in the airmass fractions above 700 mb reveal that during boreal winter air from midlatitudes originates primarily over the oceans, with 26% (±1.9%) last contacting the PBL over the eastern Pacific, 21% (±0.87%) over the Atlantic, and 16% (±1.2%) over the western Pacific. During summer, by comparison, midlatitude air originates primarily over land, overwhelmingly so over Asia [41% (±1.0%)] and, to a lesser extent, over North America [24% (±1.5%)]. Seasonal variations in the airmass fractions are interpreted in terms of changes in the large-scale ventilation of the midlatitude boundary layer and the midlatitude tropospheric jet.


Author(s):  
He Sun ◽  
Fengge Su ◽  
Zhihua He ◽  
Tinghai Ou ◽  
Deliang Chen ◽  
...  

AbstractIn this study, two sets of precipitation estimates based on the regional Weather Research and Forecasting model (WRF) –the high Asia refined analysis (HAR) and outputs with a 9 km resolution from WRF (WRF-9km) are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias of -11% to 3%), while the HAR performs well in the upper Indus (UI) and upper Brahmaputra (UB) basins (with NSE of 0.6 and bias of -15% to -9%). Both the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow, but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.


Sign in / Sign up

Export Citation Format

Share Document