scholarly journals Influence of Tropical Cyclones on Humidity Patterns over Southern Baja California, Mexico

2007 ◽  
Vol 135 (4) ◽  
pp. 1208-1224 ◽  
Author(s):  
Luis M. Farfán ◽  
Ira Fogel

Abstract The influence of tropical cyclone circulations in the distribution of humidity and convection over northwestern Mexico is investigated by analyzing circulations that developed in the eastern Pacific Ocean from 1 July to 21 September 2004. Documented cases having some impact over the Baja California Peninsula include Tropical Storm Blas (13–15 July), Hurricane Frank (23–25 August), Hurricane Howard (2–6 September), and Hurricane Javier (15–20 September). Datasets are derived from geostationary satellite imagery, upper-air and surface station observations, as well as an analysis from an operational model. Emphasis is given to circulations that moved within 800 km of the southern part of the peninsula. The distribution of precipitable water is used to identify distinct peaks during the approach of these circulations and deep convection that occurred for periods of several days over the southern peninsula and Gulf of California. Hurricane Howard is associated with a significant amount of precipitation, while Hurricane Javier made landfall across the central peninsula with a limited impact on the population in the area. An examination of the large-scale environment suggests that advection of humid air from the equatorial Pacific is an important element in sustaining tropical cyclones and convection off the coast of western Mexico.

2005 ◽  
Vol 20 (5) ◽  
pp. 801-811 ◽  
Author(s):  
Luis M. Farfán

Abstract Characteristics of the life cycle and motion of convective systems that occurred over the Baja California Peninsula were determined from a case study in September of 2003. This note applies data from satellite imagery, regular observations from upper-air and surface networks, and operational analyses. Changes in environmental conditions over northwestern Mexico are documented and these are associated with the development of Tropical Cyclone Linda in the eastern Pacific Ocean. When Linda became a tropical storm and was located several hundred kilometers away to the southwest, a convective outbreak occurred over land. An examination of large-scale conditions indicated that flow from the eastern flank of Linda supplied low- to midlevel moisture. Significant convection is associated with specific thresholds for precipitable water, CAPE, and lifted index. Convective systems initiated in the early afternoon remained active for several hours and provided localized areas of precipitation along the western side of the peninsular mountains. An assessment of all the available surface data was performed to determine regional elements that played a role in the development of these systems. Results include documentation of a sea breeze from the Gulf of California onto the mountain slopes when organized convection was first detected.


Zootaxa ◽  
2021 ◽  
Vol 4965 (2) ◽  
pp. 375-384
Author(s):  
MICHEL E. HENDRICKX

Four species of squat lobsters were collected off the northwestern coast of the Baja California Peninsula, Mexico, during an exploratory survey of fishing resources. Janethogalathea californiensis, described from California was previously known from off the west coast of the Baja California Peninsula (two localities) and from the Gulf of California (three localities). Of the three species of Munida collected during the survey, M. tenella is recorded off the west coast of the Baja California Peninsula for the first time. These are the fourth record of M. hispida and the second record of M. quadrispina in western Mexico.


2014 ◽  
Vol 27 (11) ◽  
pp. 4313-4336 ◽  
Author(s):  
Haiyan Jiang ◽  
Cheng Tao

Abstract Based on the 12-yr (1998–2009) Tropical Rainfall Measuring Mission (TRMM) precipitation feature (PF) database, both radar and infrared (IR) observations from TRMM are used to quantify the contribution of tropical cyclones (TCs) to very deep convection (VDC) in the tropics and to compare TRMM-derived properties of VDC in TCs and non-TCs. Using a radar-based definition, it is found that the contribution of TCs to total VDC in the tropics is not much higher than the contribution of TCs to total PFs. However, the area-based contribution of TCs to overshooting convection defined by IR is 13.3%, which is much higher than the 3.2% contribution of TCs to total PFs. This helps explain the contradictory results between previous radar-based and IR-based studies and indicates that TCs only contribute disproportionately large amount of overshooting convection containing mainly small ice particles that are barely detected by the TRMM radar. VDC in non-TCs over land has the highest maximum 30- and 40-dBZ height and the strongest ice-scattering signature derived from microwave 85- and 37-GHz observations, while VDC in TCs has the coldest minimum IR brightness temperature and largest overshooting distance and area. This suggests that convection is much more intense in non-TCs over land but is much deeper or colder in TCs. It is found that VDC in TCs usually has smaller environmental shear but larger total precipitable water and convective available potential energy than those in non-TCs. These findings offer evidence that TCs may contribute disproportionately to troposphere-to-stratosphere heat and moisture exchange.


2012 ◽  
Vol 27 (6) ◽  
pp. 1373-1393 ◽  
Author(s):  
Luis M. Farfán ◽  
Rosario Romero-Centeno ◽  
G. B. Raga

Abstract This study focuses on track and intensity changes of three tropical cyclones that, during the season of 2006, developed in the eastern North Pacific basin and made landfall over northwestern Mexico. Observational datasets, including satellite and radar imagery and a rain gauge network, are used to document regional-scale structures. Additionally, gridded fields are applied to determine the large-scale environment. John made landfall as a category-2 hurricane on the Saffir–Simpson scale and moved along the Baja California Peninsula during more than 40 h, resulting in total rainfall of up to 506 mm. The largest accumulations were located over mountains and set new records with respect to daily rates from the 1969–2005 period. Later in the season, Lane and Paul made landfall over the mainland and brought moderate rainfall over the coastal plains. Lane became a category-3 hurricane and was the third strongest hurricane to make landfall since 1969. In contrast, Paul followed a recurving track to reach the coastline as a weakening tropical depression. Strong wind shear, associated with a midlatitude trough, is found to be related to the intensity change. Examination of the official forecasts reveals that first inland positions were predicted several days before the actual landfall events. An assessment of the forecasts issued 1–3 days prior to landfall shows large track errors associated with some of the above tropical cyclones and this resulted in a westward bias. It is suggested that the track errors are due to an inadequate representation of the large-scale environment that steered the tropical cyclones.


2005 ◽  
Vol 18 (22) ◽  
pp. 4601-4620 ◽  
Author(s):  
R. W. Higgins ◽  
W. Shi

Abstract Relationships between Gulf of California moisture surges and tropical cyclones (TCs) in the eastern Pacific basin are examined. Standard surface observations are used to identify gulf surge events at Yuma, Arizona, for a multiyear (July–August 1979–2001) period. The surges are related to TCs using National Hurricane Center 6-hourly track data for the eastern Pacific basin. Climate Prediction Center (CPC)- observed daily precipitation analyses and the NCEP Regional Reanalysis are used to examine the relative differences in the precipitation, atmospheric circulation, and moisture fields for several categories of surge events, including those that are directly related to TCs, indirectly related to TCs, and not related to TCs. It is shown that the response to the surge in the southwestern United States and northwestern Mexico is strongly discriminated by the presence or absence of TCs. Surges related to TCs tend to be associated with much stronger and deeper low-level southerly flow, deeper plumes of tropical moisture, and wetter conditions over the core monsoon region than surges that are unrelated to TCs. The response to the surge is also strongly influenced by the proximity of the TC to the Gulf of California (GOC) region. Tropical cyclones that track toward the GOC region exert a stronger, more direct influence on Yuma surges than those that track away from the GOC.


2019 ◽  
Vol 67 (S5) ◽  
pp. S63-S69
Author(s):  
María Elena García-Garza ◽  
Iliana Torres-Manríquez ◽  
María Ana Tovar-Hernández ◽  
Jesús Angel De León-González

Introduction: Glycerides, commonly called “blood worms”, are relatively thin polychaetes that reach considerable sizes. They have been reported for all the seas of the world from the intertidal zone to abyssal depths. Objective: Evidence the presence of two species of Glycera for the littorals of the Mexican Pacific. Methods: An analysis of the glycerides of the Pacific coast of Mexico was carried out, finding two species that were collected, one of shrimp trawl at a depth of 18 meters off Puertecitos, Baja California, as well as by manual sampling in the intertidal zone of Concepción Bay, Baja California Sur in the Gulf of California. For their taxonomic determination, morphological characters of greater relevance for their identification were examined, such as jaws, aileron shape, parapodia, chaetae, and the type of pharyngeal papillae. Results: We diagnosed and schematized Glycera guatemalensis Böggemann & Fiege, 2001 and Glycera sphyrabrancha Schmarda, 1861. Conclusions: Glycera guatemalensis described for Guatemala and Glycera sphyrabrancha described for Jamaica, are recorded for the first time for the Gulf of California.


2014 ◽  
Vol 31 (4) ◽  
pp. 741-764 ◽  
Author(s):  
Paul E. Ciesielski ◽  
Hungjui Yu ◽  
Richard H. Johnson ◽  
Kunio Yoneyama ◽  
Masaki Katsumata ◽  
...  

Abstract The upper-air sounding network for Dynamics of the Madden–Julian Oscillation (DYNAMO) has provided an unprecedented set of observations for studying the MJO over the Indian Ocean, where coupling of this oscillation with deep convection first occurs. With 72 rawinsonde sites and dropsonde data from 13 aircraft missions, the sounding network covers the tropics from eastern Africa to the western Pacific. In total nearly 26 000 soundings were collected from this network during the experiment’s 6-month extended observing period (from October 2011 to March 2012). Slightly more than half of the soundings, collected from 33 sites, are at high vertical resolution. Rigorous post–field phase processing of the sonde data included several levels of quality checks and a variety of corrections that address a number of issues (e.g., daytime dry bias, baseline surface data errors, ship deck heating effects, and artificial dry spikes in slow-ascent soundings). Because of the importance of an accurate description of the moisture field in meeting the scientific goals of the experiment, particular attention is given to humidity correction and its validation. The humidity corrections, though small relative to some previous field campaigns, produced high-fidelity moisture analyses in which sonde precipitable water compared well with independent estimates. An assessment of operational model moisture analyses using corrected sonde data shows an overall good agreement with the exception at upper levels, where model moisture and clouds are more abundant than the sonde data would indicate.


2022 ◽  
Vol 8 (1) ◽  
pp. 33-51
Author(s):  
Chibuike Chiedozie Ibebuchi ◽  

<abstract> <p>The influence of large-scale circulation patterns on the track and formation of tropical cyclones (TCs) in the Mozambique Channel is investigated in this paper. The output of the hourly classification of circulation types (CTs), in Africa, south of the equator, using rotated principal component analysis on the T-mode matrix (variable is time series and observation is grid points) of sea level pressure (SLP) from ERA5 reanalysis from 2010 to 2019 was used to investigate the time development of the CTs at a sub-daily scale. The result showed that at specific seasons, certain CTs are dominant so that their features overlap with other CTs. CTs with synoptic features, such as enhanced precipitable water and cyclonic activity in the Mozambique Channel that can be favorable for the development of TC in the Channel were noted. The 2019 TC season in the Mozambique Channel characterized by TC Idai in March and TC Kenneth afterward in April were used in evaluating how the CTs designated to have TC characteristics played role in the formation and track of the TCs towards their maximum intensity. The results were discussed and it generally showed that large-scale circulation patterns can influence the formation and track of the TCs in the Mozambique Channel especially through (ⅰ) variations in the position and strength of the anticyclonic circulation at the western branch of the Mascarene high; (ⅱ) modulation of wind speed and wind direction; hence influencing convergence in the Channel; (ⅲ) and modulation of the intensity of cyclonic activity in the Channel that can influence large-scale convection.</p> </abstract>


2018 ◽  
Vol 44 (3) ◽  
pp. 293-298
Author(s):  
Fernando R. Elorriaga-Verplancken ◽  
Patricia Meneses ◽  
Abraham Cárdenas-Llerenas ◽  
Wayne Phillips ◽  
Abel de la Torre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document