scholarly journals Real-Time Adaptive Observation Guidance Using Singular Vectors for Typhoon Jangmi (200815) in T-PARC 2008

2011 ◽  
Vol 26 (5) ◽  
pp. 634-649 ◽  
Author(s):  
Hyun Mee Kim ◽  
Sung-Min Kim ◽  
Byoung-Joo Jung

Abstract In this study, structures of real-time adaptive observation guidance provided by Yonsei University (YSU) in South Korea during The Observing System Research and Predictability Experiment (THORPEX)-Pacific Asian Regional Campaign (T-PARC) are presented and compared with those of no-lead-time adaptive observation guidance recalculated as well as other adaptive observation guidance for a tropical cyclone (Jangmi 200815). During the T-PARC period, real-time dry total energy (TE) singular vectors (SVs) based on the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and the corresponding tangent linear and adjoint models with a Lanczos algorithm are provided by YSU to help determine sensitive regions for targeted observations. While YSU provided the real-time TESV guidance based on a mesoscale model, other institutes provided real-time TESV guidance based on global models. The overall features of the real-time MM5 TESVs were similar to those generated from global models, showing influences from tropical cyclones, midlatitude troughs, and subtropical ridges. TESV structures are very sensitive to verification region and forecast lead time. If a more accurate basic-state trajectory with no lead time is used, more accurate TESVs, which yield more accurate determinations of sensitive regions for targeted observations, may be calculated. The results of this study may imply that reducing forecast lead time is an important component to obtaining better sensitivity guidance for real-time targeted observation operations.

Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 300 ◽  
Author(s):  
Aida Jabbari ◽  
Deg-Hyo Bae

Numerical weather prediction (NWP) models produce a quantitative precipitation forecast (QPF), which is vital for a wide range of applications, especially for accurate flash flood forecasting. The under- and over-estimation of forecast uncertainty pose operational risks and often encourage overly conservative decisions to be made. Since NWP models are subject to many uncertainties, the QPFs need to be post-processed. The NWP biases should be corrected prior to their use as a reliable data source in hydrological models. In recent years, several post-processing techniques have been proposed. However, there is a lack of research on post-processing the real-time forecast of NWP models considering bias lead-time dependency for short- to medium-range forecasts. The main objective of this study is to use the total least squares (TLS) method and the lead-time dependent bias correction method—known as dynamic weighting (DW)—to post-process forecast real-time data. The findings show improved bias scores, a decrease in the normalized error and an improvement in the scatter index (SI). A comparison between the real-time precipitation and flood forecast relative bias error shows that applying the TLS and DW methods reduced the biases of real-time forecast precipitation. The results for real-time flood forecasts for the events of 2002, 2007 and 2011 show error reductions and accuracy improvements of 78.58%, 81.26% and 62.33%, respectively.


2009 ◽  
Vol 137 (2) ◽  
pp. 525-543 ◽  
Author(s):  
Hyun Mee Kim ◽  
Byoung-Joo Jung

Abstract In this study, the structures and growth rates of singular vectors (SVs) for Typhoon Usagi were investigated using different moist physics and norms. The fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and its tangent linear and adjoint models with a Lanczos algorithm were used to calculate SVs over a 36-h period. The moist physics used for linear (i.e., tangent linear and adjoint model) integrations is large-scale precipitation, and the norms used are dry and moist total energy (TE) norms. Overall, moist physics in linear integrations and a moist TE norm increase the growth rates of SVs and cause smaller horizontal structures and vertical distributions closer to the lower boundary. With a dry TE norm, the SV energy distributions show similar (dissimilar) large- (small-) scale horizontal SV structures for experiments, regardless of physics. The SVs with moist linear physics and a moist TE norm have maximum horizontal energy structures near the typhoon center. With a small weighting on the moisture term in the moist TE norm, both the remote and nearby influences on the TC are indicated by the horizontal SV energy distributions. The kinetic energy shows the largest contributions to the vertical SV TE distributions in most of the experiments, except for the largest moisture (potential energy) contributions to the SV TE at the final (initial) time in the moist TE norm (dry and weighted moist TE norms at uppermost levels). In contrast, the SV vorticity distributions show more consistent structures among experiments with different linear physics and norms, implying that, in terms of the rotational component of the wind field, the SVs are not sensitive to the choice of moist physics and norms. Given large-scale precipitation as the linear moist physics, the SV energy structures and growth rate with a moist TE norm show the largest difference when compared with those with other norms.


Author(s):  
Ganesh R. Ghimire ◽  
Witold F. Krajewski ◽  
Felipe Quintero

AbstractIncorporating rainfall forecasts into a real-time streamflow forecasting system extends the forecast lead time. Since quantitative precipitation forecasts (QPFs) are subject to substantial uncertainties, questions arise on the trade-off between the time horizon of the QPF and the accuracy of the streamflow forecasts. This study explores the problem systematically, exploring the uncertainties associated with QPFs and their hydrologic predictability. The focus is on scale dependence of the trade-off between the QPF time horizon, basin-scale, space-time scale of the QPF, and streamflow forecasting accuracy. To address this question, the study first performs a comprehensive independent evaluation of the QPFs at 140 U.S. Geological Survey (USGS) monitored basins with a wide range of spatial scales (~10 – 40,000 km2) over the state of Iowa in the Midwestern United States. The study uses High-Resolution Rapid Refresh (HRRR) and Global Forecasting System (GFS) QPFs for short and medium-range forecasts, respectively. Using Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimate (QPE) as a reference, the results show that the rainfall-to-rainfall QPF errors are scale-dependent. The results from the hydrologic forecasting experiment show that both QPFs illustrate clear value for real-time streamflow forecasting at longer lead times in the short- to medium-range relative to the no-rain streamflow forecast. The value of QPFs for streamflow forecasting is particularly apparent for basin sizes below 1,000 km2. The space-time scale, or reference time (tr) (ratio of forecast lead time to basin travel time) ~ 1 depicts the largest streamflow forecasting skill with a systematic decrease in forecasting accuracy for tr > 1.


2014 ◽  
Author(s):  
Irving Biederman ◽  
Ori Amir
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.


Author(s):  
Jiyang Yu ◽  
Dan Huang ◽  
Siyang Zhao ◽  
Nan Pei ◽  
Huixia Cheng ◽  
...  

Author(s):  
Vladimir V. NEKRASOV

Developing a microcontroller-based system for controlling the flywheel motor of high-dynamics spacecraft using Russian-made parts and components made it possible to make statement of the problem of searching control function for a preset rotation rate of the flywheel rotor. This paper discusses one of the possible options for mathematical study of the stated problem, namely, application of structural analysis based on graph theory. Within the framework of the stated problem a graph was constructed for generating the new required rate, while in order to consider the stochastic case option the incidence and adjacency matrices were constructed. The stated problem was solved using a power matrix which transforms a set of contiguous matrices of the graph of admissible solution edge sequences, the real-time control function was found. Based on the results of this work, operational trials were run for the developed control function of the flywheel motor rotor rotation rate, a math model was constructed for the real-time control function, and conclusions were drawn about the feasibility of implementing the results of this study. Key words: Control function, graph, incidence matrix, adjacency matrix, power matrix, microcontroller control of the flywheel motor, highly dynamic spacecraft.


Sign in / Sign up

Export Citation Format

Share Document