scholarly journals Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa

2018 ◽  
Vol 33 (2) ◽  
pp. 369-388 ◽  
Author(s):  
Peter Vogel ◽  
Peter Knippertz ◽  
Andreas H. Fink ◽  
Andreas Schlueter ◽  
Tilmann Gneiting

AbstractAccumulated precipitation forecasts are of high socioeconomic importance for agriculturally dominated societies in northern tropical Africa. In this study, the performance of nine operational global ensemble prediction systems (EPSs) is analyzed relative to climatology-based forecasts for 1–5-day accumulated precipitation based on the monsoon seasons during 2007–14 for three regions within northern tropical Africa. To assess the full potential of raw ensemble forecasts across spatial scales, state-of-the-art statistical postprocessing methods were applied in the form of Bayesian model averaging (BMA) and ensemble model output statistics (EMOS), and results were verified against station and spatially aggregated, satellite-based gridded observations. Raw ensemble forecasts are uncalibrated and unreliable, and often underperform relative to climatology, independently of region, accumulation time, monsoon season, and ensemble. The differences between raw ensemble and climatological forecasts are large and partly stem from poor prediction for low precipitation amounts. BMA and EMOS postprocessed forecasts are calibrated, reliable, and strongly improve on the raw ensembles but, somewhat disappointingly, typically do not outperform climatology. Most EPSs exhibit slight improvements over the period 2007–14, but overall they have little added value compared to climatology. The suspicion is that parameterization of convection is a potential cause for the sobering lack of ensemble forecast skill in a region dominated by mesoscale convective systems.

2021 ◽  
Author(s):  
Trine J. Hegdahl ◽  
Kolbjørn Engeland ◽  
Ingelin Steinsland ◽  
Andrew Singleton

Abstract. The novelty of this study is to evaluate the univariate and the combined effects of including both precipitation and temperature forecasts in the preprocessing together with the postprocessing of streamflow for forecasting of floods as well as all streamflow values for a large sample of catchments. A hydrometeorological forecasting chain in an operational flood forecasting setting with 119 Norwegian catchments was used. This study evaluates the added value of pre- and postprocessing methods for ensemble forecasts in a hydrometeorological forecasting chain in an operational flood forecasting setting with 119 Norwegian catchments. Two years of ECMWF ensemble forecasts of temperature (T) and precipitation (P) with a lead-time up to 9 days were used to force the operational hydrological HBV model to establish streamflow forecasts. Two approaches to preprocess the temperature and precipitation forecasts were tested. 1) An existing approach applied to the gridded forecasts using quantile mapping for temperature and a Bernoulli-gamma distribution for precipitation. 2) Bayesian model averaging (BMA) applied to catchment average values of temperature and precipitation. BMA was also used for postprocessing catchment streamflow forecasts. Ensemble forecasts of streamflow were generated for a total of fourteen schemes based on combinations of raw, preprocessed, and postprocessed forecasts in the hydrometeorological forecasting chain. The aim of this study is to assess which pre- and postprocessing approaches should be used to improve streamflow and flood forecasts and look for regional or seasonal patterns in preferred approaches. The forecasts were evaluated for two datasets: i) all streamflows and ii) flood events with streamflow above mean annual flood. Evaluations were based on reliability, continuous ranked probability score (CRPS) and -skill score (CRPSS). For the flood dataset, the critical success index (CSI) was used. Evaluations based on all streamflow data showed that postprocessing improved the forecasts only up to a lead-time of two to three days, whereas preprocessing T and P using BMA improved the forecasts for 50 %–90 % of the catchments beyond three days lead-time. However, for flood events, the added value of pre- and postprocessing is smaller. Preprocessing of P and T gave better CRPS for marginally more catchments compared to the other schemes. Based on CSI, we found that many of the forecast schemes perform equally well. Further, we found large differences in the ability to issue warnings between spring and autumn floods. There was almost no ability to predict autumn floods beyond 3 days, whereas the spring floods had predictability up to 9 days for many events and catchments. The results indicate that the ensemble forecasts have problems in predicting correct autumn precipitation, and the uncertainty is larger for heavy autumn precipitation compared to spring events when temperature driven snow melt is important. To summarize we find that the flood forecasts benefit from most pre-and postprocessing schemes, although the best processing approaches depend on region, catchment, and season, and that the processing scheme should be tailored to each catchment, lead time, season and the purpose of the forecasting.


2010 ◽  
Vol 138 (11) ◽  
pp. 4199-4211 ◽  
Author(s):  
Maurice J. Schmeits ◽  
Kees J. Kok

Abstract Using a 20-yr ECMWF ensemble reforecast dataset of total precipitation and a 20-yr dataset of a dense precipitation observation network in the Netherlands, a comparison is made between the raw ensemble output, Bayesian model averaging (BMA), and extended logistic regression (LR). A previous study indicated that BMA and conventional LR are successful in calibrating multimodel ensemble forecasts of precipitation for a single forecast projection. However, a more elaborate comparison between these methods has not yet been made. This study compares the raw ensemble output, BMA, and extended LR for single-model ensemble reforecasts of precipitation; namely, from the ECMWF ensemble prediction system (EPS). The raw EPS output turns out to be generally well calibrated up to 6 forecast days, if compared to the area-mean 24-h precipitation sum. Surprisingly, BMA is less skillful than the raw EPS output from forecast day 3 onward. This is due to the bias correction in BMA, which applies model output statistics to individual ensemble members. As a result, the spread of the bias-corrected ensemble members is decreased, especially for the longer forecast projections. Here, an additive bias correction is applied instead and the equation for the probability of precipitation in BMA is also changed. These modifications to BMA are referred to as “modified BMA” and lead to a significant improvement in the skill of BMA for the longer projections. If the area-maximum 24-h precipitation sum is used as a predictand, both modified BMA and extended LR improve the raw EPS output significantly for the first 5 forecast days. However, the difference in skill between modified BMA and extended LR does not seem to be statistically significant. Yet, extended LR might be preferred, because incorporating predictors that are different from the predictand is straightforward, in contrast to BMA.


2007 ◽  
Vol 135 (4) ◽  
pp. 1364-1385 ◽  
Author(s):  
Laurence J. Wilson ◽  
Stephane Beauregard ◽  
Adrian E. Raftery ◽  
Richard Verret

Abstract Bayesian model averaging (BMA) has recently been proposed as a way of correcting underdispersion in ensemble forecasts. BMA is a standard statistical procedure for combining predictive distributions from different sources. The output of BMA is a probability density function (pdf), which is a weighted average of pdfs centered on the bias-corrected forecasts. The BMA weights reflect the relative contributions of the component models to the predictive skill over a training sample. The variance of the BMA pdf is made up of two components, the between-model variance, and the within-model error variance, both estimated from the training sample. This paper describes the results of experiments with BMA to calibrate surface temperature forecasts from the 16-member Canadian ensemble system. Using one year of ensemble forecasts, BMA was applied for different training periods ranging from 25 to 80 days. The method was trained on the most recent forecast period, then applied to the next day’s forecasts as an independent sample. This process was repeated through the year, and forecast quality was evaluated using rank histograms, the continuous rank probability score, and the continuous rank probability skill score. An examination of the BMA weights provided a useful comparative evaluation of the component models, both for the ensemble itself and for the ensemble augmented with the unperturbed control forecast and the higher-resolution deterministic forecast. Training periods around 40 days provided a good calibration of the ensemble dispersion. Both full regression and simple bias-correction methods worked well to correct the bias, except that the full regression failed to completely remove seasonal trend biases in spring and fall. Simple correction of the bias was sufficient to produce positive forecast skill out to 10 days with respect to climatology, which was improved by the BMA. The addition of the control forecast and the full-resolution model forecast to the ensemble produced modest improvement in the forecasts for ranges out to about 7 days. Finally, BMA produced significantly narrower 90% prediction intervals compared to a simple Gaussian bias correction, while achieving similar overall accuracy.


2014 ◽  
Vol 142 (4) ◽  
pp. 1542-1555 ◽  
Author(s):  
Jianguo Liu ◽  
Zhenghui Xie

Abstract Bayesian model averaging (BMA) probability quantitative precipitation forecast (PQPF) models were established by calibrating their parameters using 1–7-day ensemble forecasts of 24-h accumulated precipitation, and observations from 43 meteorological stations in the Huaihe Basin. Forecasts were provided by four single-center (model) ensemble prediction systems (EPSs) and their multicenter (model) grand ensemble systems, which consider exchangeable members (EGE) in The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE). The four single-center EPSs were from the China Meteorological Administration (CMA), the European Centre for Medium-Range Weather Forecasts (ECMWF), the National Centers for Environment Prediction (NCEP), and the Met Office (UKMO). Comparisons between the raw ensemble, logistic regression, and BMA for PQPFs suggested that the BMA predictive models performed better than the raw ensemble forecasts and logistic regression. The verification and comparison of five BMA EPSs for PQPFs in the study area showed that the UKMO and ECMWF were a little superior to the NCEP and CMA in general for lead times of 1–7 days for the single-center EPSs. The BMA model for EGE outperformed those for single-center EPSs for all 1–7-day ensemble forecasts, and mostly improved the quality of PQPF. Based on the percentile forecasts from the BMA predictive PDFs for EGE, a heavy-precipitation warning scheme is proposed for the test area.


2012 ◽  
Vol 27 (4) ◽  
pp. 972-987 ◽  
Author(s):  
Yong Wang ◽  
Simona Tascu ◽  
Florian Weidle ◽  
Karin Schmeisser

Abstract The regional single-model-based Aire Limitée Adaptation Dynamique Développement International–Limited Area Ensemble Forecasting (ALADIN-LAEF) ensemble prediction system (EPS) is evaluated and compared with the global ECMWF-EPS to investigate the added value of regional to global EPS models. ALADIN-LAEF consists of 16 perturbed members at 18-km horizontal resolution, while ECMWF-EPS includes 50 perturbed members at 50-km horizontal resolution. In ALADIN-LAEF, the atmospheric initial condition uncertainty is quantified by using blending, which combines large-scale uncertainty generated by the ECMWF-EPS singular-vector approach with small-scale perturbations resolved by the ALADIN breeding technique. The surface initial condition perturbations are generated by use of the noncycling surface breeding (NCSB) technique, and different physics schemes are employed for different forecast members to account for model uncertainties. The verification and comparison have been carried out for a 2-month period during summer 2007 over central Europe. The results show a quite favorable level of performance for ALADIN-LAEF compared to ECMWF-EPS for surface weather variables. ALADIN-LAEF adds more value to precipitation forecasts and has greater skill for 10-m wind and mean sea level pressure results than does ECMWF-EPS. For 2-m temperature, ALADIN-LAEF forecasts have larger spread, are statistically more consistent, but also have less skill than ECMWF-EPS due to the strong cold bias in the ALADIN forecasts. For the upper-air weather parameters, the forecast of ALADIN-LAEF has a larger spread, but the forecast skill of ALADIN-LAEF is from neutral to slightly inferior compared to ECMWF-EPS. It may be concluded that a regional single-model-based EPS with fewer ensemble members could provide more added value in terms of greater skill for near-surface weather variables than the global EPS with larger ensemble size, whereas it may have limitations when applied to upper-air weather variables.


2017 ◽  
Vol 32 (6) ◽  
pp. 2217-2227 ◽  
Author(s):  
Siri Sofie Eide ◽  
John Bjørnar Bremnes ◽  
Ingelin Steinsland

Abstract In this paper, probabilistic wind speed forecasts are constructed based on ensemble numerical weather prediction (NWP) forecasts for both wind speed and wind direction. Including other NWP variables in addition to the one subject to forecasting is common for statistical calibration of deterministic forecasts. However, this practice is rarely seen for ensemble forecasts, probably because of a lack of methods. A Bayesian modeling approach (BMA) is adopted, and a flexible model class based on splines is introduced for the mean model. The spline model allows both wind speed and wind direction to be included nonlinearly. The proposed methodology is tested for forecasting hourly maximum 10-min wind speeds based on ensemble forecasts from the European Centre for Medium-Range Weather Forecasts at 204 locations in Norway for lead times from +12 to +108 h. An improvement in the continuous ranked probability score is seen for approximately 85% of the locations using the proposed method compared to standard BMA based on only wind speed forecasts. For moderate-to-strong wind the improvement is substantial, while for low wind speeds there is generally less or no improvement. On average, the improvement is 5%. The proposed methodology can be extended to include more NWP variables in the calibration and can also be applied to other variables.


2019 ◽  
Vol 34 (3) ◽  
pp. 617-634 ◽  
Author(s):  
Maxime Taillardat ◽  
Anne-Laure Fougères ◽  
Philippe Naveau ◽  
Olivier Mestre

Abstract To satisfy a wide range of end users, rainfall ensemble forecasts have to be skillful for both low precipitation and extreme events. We introduce local statistical postprocessing methods based on quantile regression forests and gradient forests with a semiparametric extension for heavy-tailed distributions. These hybrid methods make use of the forest-based outputs to fit a parametric distribution that is suitable to model jointly low, medium, and heavy rainfall intensities. Our goal is to improve ensemble quality and value for all rainfall intensities. The proposed methods are applied to daily 51-h forecasts of 6-h accumulated precipitation from 2012 to 2015 over France using the Météo-France ensemble prediction system called Prévision d’Ensemble ARPEGE (PEARP). They are verified with a cross-validation strategy and compete favorably with state-of-the-art methods like analog ensemble or ensemble model output statistics. Our methods do not assume any parametric links between the variables to calibrate and possible covariates. They do not require any variable selection step and can make use of more than 60 predictors available such as summary statistics on the raw ensemble, deterministic forecasts of other parameters of interest, or probabilities of convective rainfall. In addition to improvements in overall performance, hybrid forest-based procedures produced the largest skill improvements for forecasting heavy rainfall events.


2016 ◽  
Vol 144 (4) ◽  
pp. 1649-1668 ◽  
Author(s):  
Daniel Hodyss ◽  
Elizabeth Satterfield ◽  
Justin McLay ◽  
Thomas M. Hamill ◽  
Michael Scheuerer

Abstract Ensemble postprocessing is frequently applied to correct biases and deficiencies in the spread of ensemble forecasts. Methods involving weighted, regression-corrected forecasts address the typical biases and underdispersion of ensembles through a regression correction of ensemble members followed by the generation of a probability density function (PDF) from the weighted sum of kernels fit around each corrected member. The weighting step accounts for the situation where the ensemble is constructed from different model forecasts or generated in some way that creates ensemble members that do not represent equally likely states. In the present work, it is shown that an overweighting of climatology in weighted, regression-corrected forecasts can occur when one first performs a regression-based correction before weighting each member. This overweighting of climatology results in an increase in the mean-squared error of the mean of the predicted PDF. The overweighting of climatology is illustrated in a simulation study and a real-data study, where the reference is generated through a direct application of Bayes’s rule. The real-data example is a comparison of a particular method referred to as Bayesian model averaging (BMA) and a direct application of Bayes’s rule for ocean wave heights using U.S. Navy and National Weather Service global deterministic forecasts. This direct application of Bayes’s rule is shown to not overweight climatology and may be a low-cost replacement for the generally more expensive weighted, regression-correction methods.


2015 ◽  
Vol 143 (3) ◽  
pp. 955-971 ◽  
Author(s):  
Kira Feldmann ◽  
Michael Scheuerer ◽  
Thordis L. Thorarinsdottir

Abstract Statistical postprocessing techniques are commonly used to improve the skill of ensembles from numerical weather forecasts. This paper considers spatial extensions of the well-established nonhomogeneous Gaussian regression (NGR) postprocessing technique for surface temperature and a recent modification thereof in which the local climatology is included in the regression model to permit locally adaptive postprocessing. In a comparative study employing 21-h forecasts from the Consortium for Small Scale Modelling ensemble predictive system over Germany (COSMO-DE), two approaches for modeling spatial forecast error correlations are considered: a parametric Gaussian random field model and the ensemble copula coupling (ECC) approach, which utilizes the spatial rank correlation structure of the raw ensemble. Additionally, the NGR methods are compared to both univariate and spatial versions of the ensemble Bayesian model averaging (BMA) postprocessing technique.


2017 ◽  
Vol 14 ◽  
pp. 227-230
Author(s):  
Shi Lan ◽  
Xu Lina ◽  
Hao Yuzhu

Abstract. The fused product of wind speed for the wind farm is designed through the use of wind speed products of ensemble prediction from the European Centre for Medium-Range Weather Forecasts (ECMWF) and professional numerical model products on wind power based on Mesoscale Model5 (MM5) and Beijing Rapid Update Cycle (BJ-RUC), which are suitable for short-term wind power forecasting and electric dispatch. The single-valued forecast is formed by calculating the different ensemble statistics of the Bayesian probabilistic forecasting representing the uncertainty of ECMWF ensemble prediction. Using autoregressive integrated moving average (ARIMA) model to improve the time resolution of the single-valued forecast, and based on the Bayesian model averaging (BMA) and the deterministic numerical model prediction, the optimal wind speed forecasting curve and the confidence interval are provided. The result shows that the fusion forecast has made obvious improvement to the accuracy relative to the existing numerical forecasting products. Compared with the 0–24 h existing deterministic forecast in the validation period, the mean absolute error (MAE) is decreased by 24.3 % and the correlation coefficient (R) is increased by 12.5 %. In comparison with the ECMWF ensemble forecast, the MAE is reduced by 11.7 %, and R is increased 14.5 %. Additionally, MAE did not increase with the prolongation of the forecast ahead.


Sign in / Sign up

Export Citation Format

Share Document