scholarly journals An Analysis on Perturbation Features of Convection-Allowing Ensemble Prediction Based on the Local Breeding Growth Mode

2019 ◽  
Vol 34 (2) ◽  
pp. 289-304 ◽  
Author(s):  
Shenjia Ma ◽  
Chaohui Chen ◽  
Hongrang He ◽  
Jie Xiang ◽  
Shengjie Chen ◽  
...  

Abstract In this study, a convection-allowing ensemble prediction experiment was conducted on a strong convective weather process, based on the local breeding growth mode (LBGM) method proposed according to the strongly local nature of the convective-scale weather system. A comparative analysis of the evolution characteristics of the initial perturbation was also performed, considering the results from the traditional breeding growth mode (BGM) method, to enhance understanding and application of this new initial perturbation generation method. The experimental results showed that LBGM results in the perturbation distribution exhibiting characteristics more evident of flow dependence, and an initial perturbation with greater definite kinetic significance was derived. Information entropy theory could well measure the amount of information contained in the perturbation distribution, indicating that the innovative initial perturbation generation method can increase the amount of local information associated with the initial perturbation. With regard to the physical perturbation quantities, the LBGM method can improve the dispersion of the ensemble prediction system, thereby solving the problem of insufficient ensemble spread of prediction systems obtained by the traditional BGM method. Simultaneously, the root-mean-square error of the prediction can be further reduced, and the predicted precipitation distribution is closer to the observed precipitation, thereby improving the prediction effect of the convection-allowing ensemble prediction. The LBGM method has advantages compared to the traditional method and provides a new theoretical basis for further development of initial perturbation technologies for convection-allowing ensemble prediction.

2012 ◽  
Vol 12 (8) ◽  
pp. 2631-2645 ◽  
Author(s):  
B. Vié ◽  
G. Molinié ◽  
O. Nuissier ◽  
B. Vincendon ◽  
V. Ducrocq ◽  
...  

Abstract. An assessment of the performance of different convection-permitting ensemble prediction systems (EPSs) is performed, with a focus on Heavy Precipitating Events (HPEs). The convective-scale EPS configuration includes perturbations of lateral boundary conditions (LBCs) by using a global ensemble to provide LBCs, initial conditions (ICs) through an ensemble data assimilation technique and perturbations of microphysical parameterisations to account for part of model errors. A probabilistic evaluation is conducted over an 18-day period. A clear improvement is found when uncertainties on LBCs and ICs are considered together, but the chosen microphysical perturbations have no significant impact on probabilistic scores. Innovative evaluation processes for three HPE case studies are implemented. First, maxima diagrams provide a multi-scale analysis of intense rainfall. Second, an hydrological evaluation is performed through the computation of discharge forecasts using hourly ensemble precipitation forecasts as an input. All ensembles behave similarly, but differences are found highlighting the impact of microphysical perturbations on HPEs forecasts, especially for cases involving complex small-scale processes.


Author(s):  
Jingzhuo Wang ◽  
Jing Chen ◽  
Hanbin Zhang ◽  
Hua Tian ◽  
Yining Shi

AbstractEnsemble forecast is a method to faithfully describe initial and model uncertainties in a weather forecasting system. Initial uncertainties are much more important than model uncertainties in the short-range numerical prediction. Currently, initial uncertainties are described by Ensemble Transform Kalman Filter (ETKF) initial perturbation method in Global and Regional Assimilation and Prediction Enhanced System-Regional Ensemble Prediction System (GRAPES-REPS). However, an initial perturbation distribution similar to the analysis error cannot be yielded in the ETKF method of the GRAPES-REPS. To improve the method, we introduce a regional rescaling factor into the ETKF method (we call it ETKF_R). We also compare the results between the ETKF and ETKF_R methods and further demonstrate how rescaling can affect the initial perturbation characteristics as well as the ensemble forecast skills. The characteristics of the initial ensemble perturbation improve after applying the ETKF_R method. For example, the initial perturbation structures become more reasonable, the perturbations are better able to explain the forecast errors at short lead times, and the lower kinetic energy spectrum as well as perturbation energy at the initial forecast times can lead to a higher growth rate of themselves. Additionally, the ensemble forecast verification results suggest that the ETKF_R method has a better spread-skill relationship, a faster ensemble spread growth rate and a more reasonable rank histogram distribution than ETKF. Furthermore, the rescaling has only a minor impact on the assessment of the sharpness of probabilistic forecasts. The above results all suggest that ETKF_R can be effectively applied to the operational GRAPES-REPS.


2008 ◽  
Vol 136 (11) ◽  
pp. 4092-4104 ◽  
Author(s):  
Linus Magnusson ◽  
Martin Leutbecher ◽  
Erland Källén

Abstract In this paper a study aimed at comparing the perturbation methodologies based on the singular vector ensemble prediction system (SV-EPS) and the breeding vector ensemble prediction system (BV-EPS) in the same model environment is presented. A simple breeding system (simple BV-EPS) as well as one with regional rescaling dependent on an estimate of the analysis error variance (masked BV-EPS) were used. The ECMWF Integrated Forecast System has been used and the three experiments are compared for 46 forecast cases between 1 December 2005 and 15 January 2006. By studying the distribution of the perturbation energy it was possible to see large differences between the experiments initially, but after 48 h the distributions have converged. Using probabilistic scores, these results show that SV-EPS has a somewhat better performance for the Northern Hemisphere compared to BV-EPS. For the Southern Hemisphere masked BV-EPS and SV-EPS yield almost equal results. For the tropics the masked breeding ensemble shows the best performance during the first 6 days. One reason for this is the current setup of the singular vector ensemble at ECMWF yielding in general very low initial perturbation amplitudes in the tropics.


2011 ◽  
Vol 8 (2) ◽  
pp. 2739-2782 ◽  
Author(s):  
D. Brochero ◽  
F. Anctil ◽  
C. Gagné

Abstract. Hydrological Ensemble Prediction System (HEPS), obtained by forcing rainfall-runoff models with Meteorological Ensemble Prediction Systems (MEPS), have been recognized as useful approaches to quantify uncertainties of hydrological forecasting systems. This task is complex both in terms of the coupling of information and computational time, which may create an operational barrier. The main objective of the current work is to assess the degree of simplification (reduction of members) of a HEPS configured with 16 lumped hydrological models driven by the 50 weather ensemble forecasts from the European Center for Medium-range Weather Forecasts (ECMWF). Here, the selection of the most relevant members is proposed using a Backward greedy technique with k-fold cross-validation, allowing an optimal use of the information. The methodology draws from a multi-criterion score that represents the combination of resolution, reliability, consistency, and diversity. Results show that the degree of reduction of members can be established in terms of maximum number of members required (complexity of the HEPS) or the maximization of the relationship between the different scores (performance).


2005 ◽  
Vol 133 (7) ◽  
pp. 1825-1839 ◽  
Author(s):  
A. Arribas ◽  
K. B. Robertson ◽  
K. R. Mylne

Abstract Current operational ensemble prediction systems (EPSs) are designed specifically for medium-range forecasting, but there is also considerable interest in predictability in the short range, particularly for potential severe-weather developments. A possible option is to use a poor man’s ensemble prediction system (PEPS) comprising output from different numerical weather prediction (NWP) centers. By making use of a range of different models and independent analyses, a PEPS provides essentially a random sampling of both the initial condition and model evolution errors. In this paper the authors investigate the ability of a PEPS using up to 14 models from nine operational NWP centers. The ensemble forecasts are verified for a 101-day period and five variables: mean sea level pressure, 500-hPa geopotential height, temperature at 850 hPa, 2-m temperature, and 10-m wind speed. Results are compared with the operational ECMWF EPS, using the ECMWF analysis as the verifying “truth.” It is shown that, despite its smaller size, PEPS is an efficient way of producing ensemble forecasts and can provide competitive performance in the short range. The best relative performance is found to come from hybrid configurations combining output from a small subset of the ECMWF EPS with other different NWP models.


2008 ◽  
Vol 9 (6) ◽  
pp. 1301-1317 ◽  
Author(s):  
Guillaume Thirel ◽  
Fabienne Rousset-Regimbeau ◽  
Eric Martin ◽  
Florence Habets

Abstract Ensemble streamflow prediction systems are emerging in the international scientific community in order to better assess hydrologic threats. Two ensemble streamflow prediction systems (ESPSs) were set up at Météo-France using ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System for the first one, and from the Prévision d’Ensemble Action de Recherche Petite Echelle Grande Echelle (PEARP) ensemble prediction system of Météo-France for the second. This paper presents the evaluation of their capacities to better anticipate severe hydrological events and more generally to estimate the quality of both ESPSs on their globality. The two ensemble predictions were used as input for the same hydrometeorological model. The skills of both ensemble streamflow prediction systems were evaluated over all of France for the precipitation input and streamflow prediction during a 569-day period and for a 2-day short-range scale. The ensemble streamflow prediction system based on the PEARP data was the best for floods and small basins, and the ensemble streamflow prediction system based on the ECMWF data seemed the best adapted for low flows and large basins.


2011 ◽  
Vol 139 (9) ◽  
pp. 3075-3089 ◽  
Author(s):  
A. Allen Bradley ◽  
Stuart S. Schwartz

Ensemble prediction systems produce forecasts that represent the probability distribution of a continuous forecast variable. Most often, the verification problem is simplified by transforming the ensemble forecast into probability forecasts for discrete events, where the events are defined by one or more threshold values. Then, skill is evaluated using the mean-square error (MSE; i.e., Brier) skill score for binary events, or the ranked probability skill score (RPSS) for multicategory events. A framework is introduced that generalizes this approach, by describing the forecast quality of ensemble forecasts as a continuous function of the threshold value. Viewing ensemble forecast quality this way leads to the interpretation of the RPSS and the continuous ranked probability skill score (CRPSS) as measures of the weighted-average skill over the threshold values. It also motivates additional measures, derived to summarize other features of a continuous forecast quality function, which can be interpreted as descriptions of the function’s geometric shape. The measures can be computed not only for skill, but also for skill score decompositions, which characterize the resolution, reliability, discrimination, and other aspects of forecast quality. Collectively, they provide convenient metrics for comparing the performance of an ensemble prediction system at different locations, lead times, or issuance times, or for comparing alternative forecasting systems.


2011 ◽  
Vol 8 (2) ◽  
pp. 2783-2820 ◽  
Author(s):  
D. Brochero ◽  
F. Anctil ◽  
C. Gagné

Abstract. An uncertainty cascade model applied to stream flow forecasting seeks to evaluate the different sources of uncertainty of the complex rainfall-runoff process. The current trend focuses on the combination of Meteorological Ensemble Prediction Systems (MEPS) and hydrological model(s). However, the number of members of such a HEPS may rapidly increase to a level that may not be operationally sustainable. This article evaluates a 94% simplification of an initial 800-member HEPS, forcing 16 lumped rainfall-runoff models with the European Center for Medium-range Weather Forecasts (ECMWF MEPS). More specifically, it tests the time (local) and space (regional) generalization ability of the simplified 50-member HEPS obtained using a methodology that combines 4 main aspects: (i) optimizing information of the short-length series using k-folds cross-validation, (ii) implementing a backward greedy selection technique, (iii) guiding the selection with a linear combination of diversified scores, and (iv) formulating combination case studies at the cross-validation stage. At the local level, the transferability of the 9th day member selection was proven for the other 8 forecast horizons at an 82% success rate. At the regional level, a good performance was also achieved when the 50-member HEPS was applied to a neighbouring catchment within the same cluster. Diversity, defined as hydrological model complementarities addressing different aspects of a forecast, was identified as the critical factor for proper selection applications.


Sign in / Sign up

Export Citation Format

Share Document