Tornado Formation and Intensity Prediction Using Polarimetric Radar Estimates of Updraft Area

Author(s):  
Michael M. French ◽  
Darrel M. Kingfield

AbstractA sample of 198 supercells are investigated to determine if a radar proxy for the area of the storm midlevel updraft may be a skillful predictor of imminent tornado formation and/or peak tornado intensity. A novel algorithm, a modified version of the Thunderstorm Risk Estimation from Nowcasting Development via Size Sorting (TRENDSS) algorithm is used to estimate the area of the enhanced differential radar reflectivity factor (ZDR) column in Weather Surveillance Radar – 1988 Doppler data; the ZDR column area is used as a proxy for the area of the midlevel updraft. The areas of ZDR columns are compared for 154 tornadic supercells and 44 non-tornadic supercells, including 30+ supercells with tornadoes rated EF1, EF2, and EF3; nine supercells with EF4+ tornadoes also are analyzed. It is found that (i) at the time of their peak 0-1 km azimuthal shear, non-tornadic supercells have consistently small (< 20 km2) ZDR column areas while tornadic cases exhibit much greater variability in areas, and (ii) at the time of tornadogenesis, EF3+ tornadic cases have larger ZDR column areas than tornadic cases rated EF1/2. In addition, all nine violent tornadoes sampled have ZDR column areas > 30 km2 at the time of tornadogenesis. However, only weak positive correlation is found between ZDR column area and both radar-estimated peak tornado intensity and maximum tornado path width. Planned future work focused on mechanisms linking updraft size and tornado formation and intensity is summarized and the use of the modified TRENDSS algorithm, which is immune to ZDR bias and thus ideal for real-time operational use, is emphasized.

Author(s):  
Bernardo Breve ◽  
Stefano Cirillo ◽  
Mariano Cuofano ◽  
Domenico Desiato

AbstractGestural expressiveness plays a fundamental role in the interaction with people, environments, animals, things, and so on. Thus, several emerging application domains would exploit the interpretation of movements to support their critical designing processes. To this end, new forms to express the people’s perceptions could help their interpretation, like in the case of music. In this paper, we investigate the user’s perception associated with the interpretation of sounds by highlighting how sounds can be exploited for helping users in adapting to a specific environment. We present a novel algorithm for mapping human movements into MIDI music. The algorithm has been implemented in a system that integrates a module for real-time tracking of movements through a sample based synthesizer using different types of filters to modulate frequencies. The system has been evaluated through a user study, in which several users have participated in a room experience, yielding significant results about their perceptions with respect to the environment they were immersed.


Leonardo ◽  
2014 ◽  
Vol 47 (5) ◽  
pp. 500-501 ◽  
Author(s):  
Mónica Mendes ◽  
Pedro Ângelo ◽  
Nuno Correia

Hug@ree is an interactive installation that provides a bond between urban beings and the forest. It is an ARTiVIS (Arts, Real-Time Video and Interactivity for Sustainability) experience that provides interaction with trees and videos of trees in real-time, raising awareness of the natural environment and how individual action can collectively become so relevant. In this paper, the authors present an overview of the Hug@ree concept, related work, implementation, user experience evaluation and future work.


2013 ◽  
Vol 22 (06) ◽  
pp. 1360019
Author(s):  
DAMON BLANCHETTE ◽  
EMMANUEL AGU

Spectral rendering, or the synthesis of images by taking into account the constituent wavelengths of white light, enables the rendering of iridescent colors caused by phenomena such as dispersion, diffraction, interference and scattering. Caustics, the focusing and defocusing of light through a refractive medium, can be interpreted as a special case of dispersion where all the wavelengths travel along the same paths. In this paper we extend Adaptive Caustic Mapping (ACM), a previously proposed caustics mapping algorithm, to handle physically-based dispersion. Because ACM can display caustics in real-time, it is amenable to extension to handle the more general case of dispersion. We also present a novel algorithm for filling in the gaps that occur due to discrete sampling of the spectrum. Our proposed method runs in screen-space, and is fast enough to display plausible dispersion phenomena at real-time and interactive frame rates.


2014 ◽  
Vol 53 (8) ◽  
pp. 2017-2033 ◽  
Author(s):  
Vivek N. Mahale ◽  
Guifu Zhang ◽  
Ming Xue

AbstractThe three-body scatter signature (TBSS) is a radar artifact that appears downrange from a high-radar-reflectivity core in a thunderstorm as a result of the presence of hailstones. It is useful to identify the TBSS artifact for quality control of radar data used in numerical weather prediction and quantitative precipitation estimation. Therefore, it is advantageous to develop a method to automatically identify TBSS in radar data for the above applications and to help identify hailstones within thunderstorms. In this study, a fuzzy logic classification algorithm for TBSS identification is developed. Polarimetric radar data collected by the experimental S-band Weather Surveillance Radar-1988 Doppler (WSR-88D) in Norman, Oklahoma (KOUN), are used to develop trapezoidal membership functions for the TBSS class of radar echo within a hydrometeor classification algorithm (HCA). Nearly 3000 radar gates are removed from 50 TBSSs to develop the membership functions from the data statistics. Five variables are investigated for the discrimination of the radar echo: 1) horizontal radar reflectivity factor ZH, 2) differential reflectivity ZDR, 3) copolar cross-correlation coefficient ρhv, 4) along-beam standard deviation of horizontal radar reflectivity factor SD(ZH), and 5) along-beam standard deviation of differential phase SD(ΦDP). These membership functions are added to an HCA to identify TBSSs. Testing is conducted on radar data collected by dual-polarization-upgraded operational WSR-88Ds from multiple severe-weather events, and results show that automatic identification of the TBSS through the enhanced HCA is feasible for operational use.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1421
Author(s):  
Chih-Chiang Wei ◽  
Chen-Chia Hsu

This study developed a real-time rainfall forecasting system that can predict rainfall in a particular area a few hours before a typhoon’s arrival. The reflectivity of nine elevation angles obtained from the volume coverage pattern 21 Doppler radar scanning strategy and ground-weather data of a specific area were used for accurate rainfall prediction. During rainfall prediction and analysis, rainfall retrievals were first performed to select the optimal radar scanning elevation angle for rainfall prediction at the current time. Subsequently, forecasting models were established using a single reflectivity and all elevation angles (10 prediction submodels in total) to jointly predict real-time rainfall and determine the optimal predicted values. This study was conducted in southeastern Taiwan and included three onshore weather stations (Chenggong, Taitung, and Dawu) and one offshore weather station (Lanyu). Radar reflectivities were collected from Hualien weather surveillance radar. The data for a total of 14 typhoons that affected the study area in 2008–2017 were collected. The gated recurrent unit (GRU) neural network was used to establish the forecasting model, and extreme gradient boosting and multiple linear regression were used as the benchmarks. Typhoons Nepartak, Meranti, and Megi were selected for simulation. The results revealed that the input data set merged with weather-station data, and radar reflectivity at the optimal elevation angle yielded optimal results for short-term rainfall forecasting. Moreover, the GRU neural network can obtain accurate predictions 1, 3, and 6 h before typhoon occurrence.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 516
Author(s):  
Alessandro Rizzo ◽  
Francesco Cardellini ◽  
Claudio Poggi ◽  
Enrico Borra ◽  
Luca Ciciani ◽  
...  

Nowadays, radon gas exposure is considered one of the main health concerns for the population because, by carrying about half the total dose due to environmental radioactivity, it is the second cause of lung cancer after smoking. Due to a relatively long half-life of 3.82 days, the chemical inertia and since its parent Ra-226 is largely diffuse on the earthrgb]0,0,1’s crust and especially in the building materials, radon can diffuse and potentially saturate human habitats, with a concentration that can suddenly change during the 24 h day depending on temperature, pressure, and relative humidity. For such reasons, `real-time’ measurements performed by an active detector, possibly of small dimensions and a handy configuration, can play an important role in evaluating the risk and taking the appropriate countermeasures to mitigate it. In this work, a novel algorithm for pattern recognition was developed to exploit the potentialities of silicon active detectors with a pixel matrix structure to measure radon through the α emission, in a simple measurement configuration, where the device is placed directly in air with no holder, no collection filter or electrostatic field to drift the radon progenies towards the detector active area. This particular measurement configuration (dubbed as bare) requires an α/β-discrimination method that is not based on spectroscopic analysis: as the gas surrounds the detector the α particles are emitted at different distances from it, so they lose variable energy amount in air depending on the traveled path-length which implies a variable deposited energy in the active area. The pixels matrix structure allows overcoming this issue because the interaction of α, β and γ particles generate in the active area of the detector clusters (group of pixels where a signal is read) of different shape and energy dispersion. The novel algorithm that exploits such a phenomenon was developed using a pixelated silicon detector of the TimePix family with a compact design. An α(Am-241) and a β(Sr-90) source were used to calibrate the algorithm and to evaluate its performances in terms of β rejection capability and α recognition efficiency. Successively, the detector was exposed to different radon concentrations at the ENEA-INMRI radon facility in `bare’ configuration, in order to check the linearity of the device response over a radon concentration range. The results for this technique are presented and discussed, highlighting the potential applications especially the possibility to exploit small and handy detectors to perform radon active measurements in the simplest configuration.


2010 ◽  
Vol 2 (5) ◽  
Author(s):  
Johan Berntsson ◽  
Norman Lin ◽  
Zoltan Dezso

In this paper we present a general-purpose middleware, called ExtSim that allows OpenSim to communicate with external simulation software, and to synchronize the in-world representation of the simulator state. We briefly present two projects in ScienceSim where ExtSim has been used; Galaxsee which is an interactive real-time N-body simulation, and a protein folding demonstration, before discussing the merits and problems with the current approach. The main limitation is that we until now only have been limited to a third-party viewer, and a fixed server-client protocol, but we present our work on a new viewer, called 3Di Viewer “Rei”, which opens new possibilities in enhancing both performance and richness of the visualization suitable for scientific computing,. Finally we discuss some ideas we are currently studying for future work.


2015 ◽  
Vol 75 (3) ◽  
Author(s):  
Juliana A. Abu Bakar ◽  
Chew Shiaujing ◽  
Ooi Wooisim ◽  
Pang Chongmeng ◽  
Hafizatul H. Abdrahman ◽  
...  

Virtual heritage is able to provide visual aesthetics, real-time navigation and interaction to impress and entertain users. This article describes the design and development of three dimensional (3D) virtual heritage to view and navigate the 3D representation of Malay traditional house which is rare to be found today. The Virtual Traditional House allows flexible exploration with real-time navigation in order for users to walkthrough the 3D reconstruction of the house while viewing relevant historical information at certain parts of the house. The process of design and development of Virtual Traditional House is outlined and points of particular importance are explained. The article discusses the preliminary results of user evaluation for Virtual Traditional House. Future work includes extensive user evaluation and to what extend user may absorb the historical information surfaced around the virtual environment.


Sign in / Sign up

Export Citation Format

Share Document