Scala Vestibuli Partition with Deafness and Renal Disease

1973 ◽  
Vol 82 (6) ◽  
pp. 871-875 ◽  
Author(s):  
Ruth Gussen

Spiral ligament projections, partitioning the beginning of the scala vestibuli, bilaterally, were demonstrated in a patient with chronic renal disease, who had a bilateral midfrequency cochlear hearing loss. There were also spongy spiral ligament changes, strial atrophy and decreased spiral ganglion cells in the basal and middle cochlear turns. The patient was maintained on immunosuppressive therapy for four years after receiving a renal transplant. He died of a primary malignant lymphoma of the brain and cryptococcal meningitis, both probably related to immunosuppressive therapy.

2016 ◽  
Vol 21 (2) ◽  
pp. 88-97 ◽  
Author(s):  
Barbara J. Burgess ◽  
Jennifer T. O''Malley ◽  
Takefumi Kamakura ◽  
Kris Kristiansen ◽  
Nahid G. Robertson ◽  
...  

The histopathology of the inner ear in a patient with hearing loss caused by the p.L114P COCH mutation and its correlation with the clinical phenotype are presented. To date, 23 COCH mutations causative of DFNA9 autosomal dominant sensorineural hearing loss and vestibular disorder have been reported, and the histopathology of the human inner ear has been described in 4 of these. The p.L114P COCH mutation was first described in a Korean family. We have identified the same mutation in a family of non-Asian ancestry in the USA, and the temporal bone histopathology and clinical findings are presented herein. The histopathology found in the inner ear was similar to that shown in the 4 other COCH mutations and included degeneration of the spiral ligament with deposition of an eosinophilic acellular material, which was also found in the distal osseous spiral lamina, at the base of the spiral limbus, and in mesenchymal tissue at the base of the vestibular neuroepithelium. This is the first description of human otopathology of the COCH p.L114P mutation. In addition, it is the only case with otopathology characterization in an individual with any COCH mutation and residual hearing, thus allowing assessment of primary histopathological events in DFNA9, before progression to more profound hearing loss. A quantitative cytologic analysis of atrophy in this specimen and immunostaining using anti-neurofilament and anti-myelin protein zero antibodies confirmed that the principal histopathologic correlate of hearing loss was degeneration of the dendritic fibers of spiral ganglion cells in the osseous spiral lamina. The implications for cochlear implantation in this disorder are discussed.


1989 ◽  
Vol 98 (5) ◽  
pp. 359-363 ◽  
Author(s):  
Patricia A. Schachern ◽  
Michael M. Paparella ◽  
Donald A. Shea ◽  
Tae H. Yoon

Fabry's disease is a rare progressive X-linked recessive disorder of glycosphingolipid metabolism. The accumulation of glycosphingolipids occurs in virtually all areas of the body, including the endothelial, perithelial, and smooth-muscle cells of blood vessels, the ganglion cells of the autonomic nervous system, and the glomeruli and tubules of the kidney. Although otologic symptoms have been described in these patients, to our knowledge there have been no temporal bone histopathologic reports. We describe the clinical histories, audiometric results, and temporal bone findings of two patients with this rare disorder. Both patients demonstrated a bilateral sloping sensorineural hearing loss audiometrically. Middle ear findings of seropurulent effusions and hyperplastic mucosa were seen in all four temporal bones. Strial and spiral ligament atrophy in all turns, and hair cell loss mainly in the basal turns, were also common findings. The number of spiral ganglion cells was reduced in all temporal bones; however, evidence of glycosphingolipid accumulation was not observed in the spiral ganglia.


2020 ◽  
Vol 14 ◽  
Author(s):  
Francis Rousset ◽  
Vivianne B. C. Kokje ◽  
Rebecca Sipione ◽  
Dominik Schmidbauer ◽  
German Nacher-Soler ◽  
...  

Nearly 460 million individuals are affected by sensorineural hearing loss (SNHL), one of the most common human sensory disorders. In mammals, hearing loss is permanent due to the lack of efficient regenerative capacity of the sensory epithelia and spiral ganglion neurons (SGN). Sphere-forming progenitor cells can be isolated from the mammalian inner ear and give rise to inner ear specific cell types in vitro. However, the self-renewing capacities of auditory progenitor cells from the sensory and neuronal compartment are limited to few passages, even after adding powerful growth factor cocktails. Here, we provide phenotypical and functional characterization of a new pool of auditory progenitors as sustainable source for sphere-derived auditory neurons. The so-called phoenix auditory neuroprogenitors, isolated from the A/J mouse spiral ganglion, exhibit robust intrinsic self-renewal properties beyond 40 passages. At any passage or freezing–thawing cycle, phoenix spheres can be efficiently differentiated into mature spiral ganglion cells by withdrawing growth factors. The differentiated cells express both neuronal and glial cell phenotypic markers and exhibit similar functional properties as mouse spiral ganglion primary explants and human sphere-derived spiral ganglion cells. In contrast to other rodent models aiming at sustained production of auditory neurons, no genetic transformation of the progenitors is needed. Phoenix spheres therefore represent an interesting starting point to further investigate self-renewal in the mammalian inner ear, which is still far from any clinical application. In the meantime, phoenix spheres already offer an unlimited source of mammalian auditory neurons for high-throughput screens while substantially reducing the numbers of animals needed.


1989 ◽  
Vol 98 (6) ◽  
pp. 411-416 ◽  
Author(s):  
Joseph B. Nadol ◽  
Yi-Shyang Young ◽  
Robert J. Glynn

Ninety-three temporal bones from 66 patients who were profoundly deaf during life were reconstructed by analysis of serial light microscopic sections. The correlations of total and segmental spiral ganglion cell counts with age, duration of hearing loss and profound deafness, and cause of hearing loss were evaluated. Bivariate analysis demonstrated that total spiral ganglion cell count tended to be lower in older than in younger deaf individuals and lower with longer duration of hearing loss and total deafness. However, multiple regression analysis demonstrated that the cause of hearing loss was the single most significant determinant of total spiral ganglion cell count. Patients with deafness due to aminoglycoside toxicity or sudden idiopathic deafness had the highest residual spiral ganglion cell count and patients with deafness due to presumptive postnatal viral labyrinthitis, bacterial labyrinthitis, and congenital or genetic causes had the lowest numbers of residual spiral ganglion cells.


2005 ◽  
Vol 114 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Steven P. Tinling ◽  
Vishad Nabili ◽  
Hilary A. Brodie

Labyrinthitis ossificans (LO) is the pathological deposition of new bone within the lumen of the cochlea and labyrinth. This process occurs most commonly as a result of infection or inflammation affecting the otic capsule. Trauma and vascular compromise can also lead to neo-ossification within the otic capsule. The mechanism that regulates this process remains unestablished. This study details the end-stage histopathology in high-resolution plastic thin sections. Twenty Mongolian gerbils were infected by intrathecal injection of Streptococcus pneumoniae type 3 followed by subcutaneous penicillin G procaine (8 days) and were painlessly sacrificed 3 months later. The cochleas were serially divided and sectioned for light and electron microscopy. Sixteen of 20 animals (27 of 40 cochleas) demonstrated LO. Cochlear damage was most extensive in the vestibule and basal turn and decreased toward the apex, which often appeared normal. The histopathologic findings consisted of 1) new bone, calcospherites, osteoid, and fibrosis without dense connective tissue or osteoblasts extending from the endosteal wall into the lumen of the vestibule and scala tympani; 2) areas of dense connective tissue and osteoid enclosed by epithelial cells conjoined with the organ of Corti, stria vascularis, spiral ligament, and vestibular (Reissner's) membrane; and 3) partial to complete loss of the organ of Corti, spiral ligament cell bodies, stria vascularis, and spiral ganglion cells. Osteoblastic activity was not demonstrated in end-stage ossification in LO in the gerbil model. Neoossification appears to occur by calcospherite deposition along collagen-like fibrils within osteoid. The destruction of the organ of Corti, spiral ganglion cells, stria vascularis, and cells of Reissner's membrane and the spiral ligament occurs even in the absence of ossification of the cochlear duct.


2018 ◽  
Vol 80 (02) ◽  
pp. 169-177 ◽  
Author(s):  
Nicholas Deep ◽  
Eric Dowling ◽  
Daniel Jethanamest ◽  
Matthew Carlson

AbstractA cochlear implant (CI) is a surgically implanted device for the treatment of severe to profound sensorineural hearing loss in children and adults. It works by transducing acoustic energy into an electrical signal, which is used to stimulate surviving spiral ganglion cells of the auditory nerve. The past 2 decades have witnessed an exponential rise in the number of CI surgeries performed. Continual developments in programming strategies, device design, and minimally traumatic surgical technique have demonstrated the safety and efficacy of CI surgery. As a result, candidacy guidelines have expanded to include both pre and postlingually deaf children as young as 1 year of age, and those with greater degrees of residual hearing. A growing proportion of patients are undergoing CI for off-label or nontraditional indications including single-sided deafness, retrocochlear hearing loss, asymmetrical sensorineural hearing loss (SNHL) in adults and children with at least 1 ear that is better than performance cut-off for age, and children less than 12 months of age. Herein, we review CI design, clinical evaluation, indications, operative technique, and outcomes. We also discuss the expanding indications for CI surgery as it relates to lateral skull base pathology, comparing CI to auditory brainstem implants, and address the concerns with obtaining magnetic resonance imaging (MRI) in CI recipients.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yanzhuo Zhang ◽  
Zhe Lv ◽  
Yudong Liu ◽  
Huan Cao ◽  
Jianwang Yang ◽  
...  

A growing amount of evidence has confirmed the crucial role of the prolyl isomerase PIN1 in aging and age-related diseases. However, the mechanism of PIN1 in age-related hearing loss (ARHL) remains unclear. Pathologically, ARHL is primarily due to the loss and dysfunction of hair cells (HCs) and spiral ganglion cells (SGCs) in the cochlea. Therefore, in this study, we aimed to investigate the role of PIN1 in protecting hair cells and auditory HEI-OC1 cells from senescence. Enzyme-linked immunosorbent assays, immunohistochemistry, and immunofluorescence were used to detect the PIN1 protein level in the serum of ARHL patients and C57BL/6 mice in different groups, and in the SGCs and HCs of young and aged C57BL/6 mice. In addition, a model of HEI-OC1 cell senescence induced by H2O2 was used. Adult C57BL/6 mice were treated with juglone, or juglone and NAC, for 4 weeks. Interestingly, we found that the PIN1 protein expression decreased in the serum of patients with ARHL, in senescent HEI-OC1 cells, and in the cochlea of aged mice. Moreover, under H2O2 and juglone treatment, a large amount of ROS was produced, and phosphorylation of p53 was induced. Importantly, PIN1 expression was significantly increased by treatment with the p53 inhibitor pifithrin-α. Overexpression of PIN1 reversed the increased level of p-p53 and rescued HEI-OC1 cells from senescence. Furthermore, PIN1 mediated cellular senescence by the PI3K/Akt/mTOR signaling pathway. In vivo data from C57BL/6 mice showed that treatment with juglone led to hearing loss. Taken together, these findings demonstrated that PIN1 may act as a vital modulator in hair cell and HEI-OC1 cell senescence.


Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3853-3865 ◽  
Author(s):  
Lily Ng ◽  
Emily Cordas ◽  
Xuefeng Wu ◽  
Kristen R. Vella ◽  
Anthony N. Hollenberg ◽  
...  

A key function of the thyroid hormone receptor β (Thrb) gene is in the development of auditory function. However, the roles of the 2 receptor isoforms, TRβ1 and TRβ2, expressed by the Thrb gene are unclear, and it is unknown whether these isoforms promote the maintenance as well as development of hearing. We investigated the function of TRβ1 in mice with a Thrbb1 reporter allele that expresses β-galactosidase instead of TRβ1. In the immature cochlea, β-galactosidase was detected in the greater epithelial ridge, sensory hair cells, spiral ligament, and spiral ganglion and in adulthood, at low levels in the hair cells, support cells and root cells of the outer sulcus. Although deletion of all TRβ isoforms causes severe, early-onset deafness, deletion of TRβ1 or TRβ2 individually caused no obvious hearing loss in juvenile mice. However, over subsequent months, TRβ1 deficiency resulted in progressive loss of hearing and loss of hair cells. TRβ1-deficient mice had minimal changes in serum thyroid hormone and thyrotropin levels, indicating that hormonal imbalances were unlikely to cause hearing loss. The results suggest mutually shared roles for TRβ1 and TRβ2 in cochlear development and an unexpected requirement for TRβ1 in the maintenance of hearing in adulthood.


1967 ◽  
Vol 276 (15) ◽  
pp. 817-828 ◽  
Author(s):  
Alfred F. Michael ◽  
Robert L. Vernier ◽  
Keith N. Drummond ◽  
John I. Levitt ◽  
Roger C. Herdman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document