Quantifying Alumina Nanoparticle Dispersion in Hybrid Carbon Fiber Composites Using Photoluminescent Spectroscopy

2016 ◽  
Vol 71 (2) ◽  
pp. 258-266 ◽  
Author(s):  
Imad Hanhan ◽  
Alex Selimov ◽  
Declan Carolan ◽  
Ambrose C. Taylor ◽  
Seetha Raghavan

Composites modified with nanoparticles are of interest to many researchers due to the large surface-area-to-volume ratio of nano-scale fillers. One challenge with nanoscale materials that has received significant attention is the dispersion of nanoparticles in a matrix material. A random distribution of particles often ensures good material properties, especially as it relates to the thermal and mechanical performance of composites. Typical methods to quantify particle dispersion in a matrix material include optical, scanning electron, and transmission electron microscopy. These utilize images and a variety of analysis methods to describe particle dispersion. This work describes how photoluminescent spectroscopy can serve as an additional technique capable of quickly and comprehensively quantifying particle dispersion of photoluminescent particles in a hybrid composite. High resolution 2D photoluminescent maps were conducted on the front and back surfaces of a hybrid carbon fiber reinforced polymer containing varying contents of alumina nanoparticles. The photoluminescent maps were analyzed for the intensity of the alumina R1 fluorescence peak, and therefore yielded alumina particle dispersion based on changes in intensity from the embedded nanoparticles. A method for quantifying particle sedimentation is also proposed that compares the photoluminescent data of the front and back surfaces of each hybrid composite and assigns a single numerical value to the degree of sedimentation in each specimen. The methods described in this work have the potential to aid in the manufacturing processes of hybrid composites by providing on-site quality control options, capable of quickly and noninvasively providing feedback on nanoparticle dispersion and sedimentation.

2018 ◽  
Vol 57 (23) ◽  
pp. 6671 ◽  
Author(s):  
Alex Selimov ◽  
Sanjida Akter Jahan ◽  
Eric Barker ◽  
Peter Dackus ◽  
Declan Carolan ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 1480-1489

Lightweight aluminum metal matrix nanocomposites play an important role in aerospace, military, automotive, electricity, and structural applications due to their improved mechanical, physical, and tribological properties. The hybrid nanocomposites were made using a motorized stir casting technique to achieve the desired mechanical properties. The composites were made using a mixture of graphene amine and carbon fibers in various weight proportions. The hybrid nanocomposites were created by varying the weight percentage (wt.%) of reinforcements in the AA7076 base matrix, such as 0.5wt % carbon fiber (micro filler) and 0.5wt % graphene (nanofiller). X-Ray Diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the homogeneous distribution of the fabricated hybrid composite. The mechanical properties of the hybrid composites were assessed using hardness and tensile measures. The composite with 1wt. percent reinforcements had a 50 percent increase in hardness and a 42 percent increase in tensile strength as compared to the base AA7076 matrix content. The wear tests were conducted using a pin-on-disc tribo tester, and the results showed that the hybrid composite (1wt.%) outperformed the AA7076 matrix material in terms of wear resistance.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3732
Author(s):  
Jochen Moll ◽  
Matthias Schmidt ◽  
Johannes Käsgen ◽  
Jörg Mehldau ◽  
Marcel Bücker ◽  
...  

This paper presents a proof of concept for simultaneous load and structural health monitoring of a hybrid carbon fiber rudder stock sample consisting of carbon fiber composite and metallic parts in order to demonstrate smart sensors in the context of maritime systems. Therefore, a strain gauge is used to assess bending loads during quasi-static laboratory testing. In addition, six piezoelectric transducers are placed around the circumference of the tubular structure for damage detection based on the electro-mechanical impedance (EMI) method. A damage indicator has been defined that exploits the real and imaginary parts of the admittance for the detection of pin failure in the rudder stock. In particular, higher frequencies in the EMI spectrum contain valuable information about damage. Finally, the information about damage and load are merged in a cluster analysis enabling damage detection under load.


Polimery ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 36-43 ◽  
Author(s):  
N. M. Z. Nik Baihaqi ◽  
A. Khalina ◽  
N. Mohd Nurazzi ◽  
H. A. Aisyah ◽  
S. M. Sapuan ◽  
...  

This study aims to investigate the effect of fiber hybridization of sugar palm yarn fiber with carbon fiber reinforced epoxy composites. In this work, sugar palm yarn composites were reinforced with epoxy at varying fiber loads of 5, 10, 15, and 20 wt % using the hand lay-up process. The hybrid composites were fabricated from two types of fabric: sugar palm yarn of 250 tex and carbon fiber as the reinforcements, and epoxy resin as the matrix. The ratios of 85 : 15 and 80 : 20 were selected for the ratio between the matrix and reinforcement in the hybrid composite. The ratios of 50 : 50 and 60 : 40 were selected for the ratio between sugar palm yarn and carbon fiber. The mechanical properties of the composites were characterized according to the flexural test (ASTM D790) and torsion test (ASTM D5279). It was found that the increasing flexural and torsion properties of the non-hybrid composite at fiber loading of 15 wt % were 7.40% and 75.61%, respectively, compared to other fiber loading composites. For hybrid composites, the experimental results reveal that the highest flexural and torsion properties were achieved at the ratio of 85/15 reinforcement and 60/40 for the fiber ratio of hybrid sugar palm yarn/carbon fiber-reinforced composites. The results from this study suggest that the hybrid composite has a better performance regarding both flexural and torsion properties. The different ratio between matrix and reinforcement has a significant effect on the performance of sugar palm composites. It can be concluded that this type of composite can be utilized for beam, construction applications, and automotive components that demand high flexural strength and high torsional forces.


2016 ◽  
Vol 36 (6) ◽  
pp. 452-463 ◽  
Author(s):  
Jiao Pan ◽  
Min Li ◽  
Shaokai Wang ◽  
Yizhuo Gu ◽  
Qingwen Li ◽  
...  

This paper successfully interlaced floating catalyst chemical vapor deposition-grown carbon nanotube film and ultrathin carbon fiber prepreg to achieve strong and flexible carbon nanotube/carbon fiber hybrid composites with high carbon nanotube loading. Epoxidation was also introduced to improve interlaminar interfacial bonding. It was found that pristine carbon nanotube film/carbon fiber interply hybrid composite (carbon fiber/carbon nanotube/carbon fiber) showed sudden and brittle failure, while epoxidation caused a gradual failure behavior. Hybrid effect analysis suggested that the improved tensile performance and synergistic effect of epoxidized carbon nanotube film/carbon fiber hybrid composite were attributed to good load transfer and suppressed delamination induced by improved interfacial bonding. In addition carbon fiber/carbon nanotube/carbon fiber manifested excellent damping capacity with the maximum loss factor of 0.13. The in-plane electrical conductivity of composite with global carbon nanotube content of 21 wt% increased to the same order of magnitude as carbon nanotube film composite. The excellent mechanical, damping, and electrical properties demonstrated great potential for both structural and multifunctional applications of the resultant hybrid composites.


Author(s):  
Nandini MC

Abstract: In Recent days, the natural fibres from renewable natural resources offer the potential to act as a reinforcing material for polymer composites alternative to the use of glass, carbon and other man-made fibres. Among various fibres, Hemp is most widely used natural fibre due to its advantages like easy availability, low density, low production cost and satisfactory mechanical properties. Composite materials play a vital role in the field of materials to meet the stringent demands of light weight, high strength, corrosion resistance and near-net shapes. Composite is a structural material that consists of two or more combined constituents that are combined at a macroscopic level and are not soluble in each other. Composites are having two phases that are reinforcing phase like fiber, particle, or flakes & matrix phase like polymers, metals, and ceramics. In this project an attempt is made to prepare different combination of composite materials using hemp/carbon fiber and Carbon nano tube reinforcement and vinyl ester as the matrix material respectively. Composites were prepared according to ASTM standards and following test are carried out Tensile, Flexural and ILSS test. The effect of addition of Carbon nano tubes in hemp/vinyl ester/carbon fibers has been studied & it has been observed that there is a significant effect of fibre loading and performance of hemp/carbon fiber reinforced vinyl ester based hybrid composites with improved results Keywords: Hemp fiber, Vinyl ester, Carbon fiber, Tensile, Flexural and ILSS Test


Sign in / Sign up

Export Citation Format

Share Document