Application of Energy Dispersive X-ray Fluorescence Spectrometry to the Determination of Copper, Manganese, Zinc, and Sulfur in Grass (Lolium perenne) in Grazed Agricultural Systems

2018 ◽  
Vol 72 (11) ◽  
pp. 1661-1673 ◽  
Author(s):  
Karen Daly ◽  
Anna Fenelon

Conventional methods for the determination of major nutrients and trace elements in grass rely on acid digestion followed by analysis using inductively coupled plasma optical emission spectrometry (ICP-OES), which can be both time consuming and costly. Energy dispersive X-ray fluorescence (EDXRF) spectrometry offers a rapid alternative that can determine multiple elements in a single scan. Copper, Mn, Zn, and S in grass samples were determined using EDXRF with a number of different calibration approaches using both empirical standards and the theoretical relationships between concentrations and intensities. Using an existing archive of 467 grass samples of known concentrations, a suite of 30 samples was selected as empirical grass standards to build a calibration set between sample concentrations and EDXRF intensities. The theoretical or standardless approach used the fundamental parameters method to determine element concentrations. To validate the two calibration methods, 59 samples were randomly selected from the same archive and database and analyzed by EDXRF. The measurements of Cu, Mn, Zn, and S were compared with the ICP-OES values using agreement statistics. An excellent correlation was observed between the concentrations determined by EDXRF and ICP-OES ( R > 0.90) regardless of the calibration approach. However, agreement and closeness to the true value varied and were assessed using agreement statistics. Across all elements, the empirically calibrated samples were in excellent agreement with the values determined by ICP-OES. The theoretical calibrations provided excellent agreement for Mn and Zn, but a degree of fixed and proportional bias was observed in the Cu and S values. Fixed bias was corrected by subtracting the computed bias from the EDXRF concentrations and improved the overall agreement. Similarly, proportional bias was corrected using the linear regression model to predict the corrected EDXRF values. This improved the overall agreement with the ICP-OES values for both Cu and S using corrected fundamental parameters calibrations. This study provides a practical basis for the use of EDXRF to determine Cu, Mn, Zn, and S in grass samples to monitor forage quality in grazed systems without the need for sample digestion. The observed fixed and proportional bias in the theoretical calibrations can be corrected provided that a good correlation exists between EDXRF and conventional methods.

2016 ◽  
Vol 99 (6) ◽  
pp. 1572-1575 ◽  
Author(s):  
Dayara Virgínia L Ávila ◽  
Sidnei O Souza ◽  
Silvânio Silvério L Costa ◽  
Rennan Geovanny O Araujo ◽  
Carlos Alexandre B Garcia ◽  
...  

Abstract This work describes an analytical method for Zn determination in dry feeds for cats and dogs by energy-dispersive X-ray fluorescence (EDXRF). Samples of dry feed were powdered and prepared in the form of pellets for direct analysis by EDXRF. The LOQ (10σ) was 0.4 mg/kg. The samples were also analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES) as an independent comparative method. Application of a paired t-test showed no significant differences between Zn concentrations obtained by EDXRF and ICP-OES (at a 95% confidence level). Analysis of variance was also applied to the results and revealed no significant differences between the two techniques (at a 95% confidence level). The precision, expressed as the RSD (n = 3), was RSD < 4.55%. This analytical method provides a simple, rapid, accurate, and precise determination of Zn in dry feeds for cats and dogs by EDXRF as direct, solid-sample analysis.


2017 ◽  
Vol 56 (1) ◽  
pp. 1-11 ◽  
Author(s):  
K. Daly ◽  
A. Fenelon

AbstractElemental analysis of grass (Lolium perenne) is essential in agriculture to ensure grass quality and animal health. Energy-dispersive X-ray fluorescence (EDXRF) spectroscopy is a rapid, multi-element alternative to current methods using acid digestion and inductively coupled plasma optical emission spectrometry (ICP-OES). Percentage phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca), determined from grass samples using EDXRF, were within 0.035, 0.319, 0.025 and 0.061, respectively, of ICP-OES values. Concordance correlation coefficients computed using agreement statistics ranged from 0.4379 to 0.9669 (values close to one indicate excellent agreement); however, the level of agreement for each element depended on the calibrations used in EDXRF. Empirical calibrations gave excellent agreement for percentage P, K and Ca, but moderate agreement for percentage Mg due to a weaker correlation between standards and intensities. Standardless calibration using the fundamental parameters (FP) approach exhibited bias, with consistently lower values reported for percentage P and Mg, when compared with ICP-OES methods. The relationship between the methods was plotted as scatter plots with the line of equality included, and although correlation coefficients indicated strong relationships, these statistics masked the effects of consistent bias in the data for percentage P and Mg. These results highlight the importance of distinguishing agreement from correlation when using statistical methods to compare methods of analysis. Agreement estimates improved when a matching library of grass samples was added to the FP method. EDXRF is a comparable alternative to conventional methods for grass analysis when samples of similar matrix type are used as empirical standards or as a matching library.


1994 ◽  
Vol 349 (6) ◽  
pp. 434-437 ◽  
Author(s):  
R. M. Agrawal ◽  
S. N. Jha ◽  
Rugmini Kaimal ◽  
S. K. Malhotra ◽  
B. L. Jangida

1994 ◽  
Vol 51 (2) ◽  
pp. 197-206 ◽  
Author(s):  
S.M. Simabuco ◽  
V.F. Nascimento Filho

Three certified samples of different matrices (Soil-5, SL-1/IAEA and SARM-4/SABS) were quantitatively analysed by energy dispersive X-ray fluorescence with radioisotopic excitation. The observed errors were about 10-20% for the majority of the elements and less than 10% for Fe and Zn in the Soil-5, Mn in SL-1, and Ti, Fe and Zn in SARM-4 samples. Annular radioactive sources of Fe-55 and Cd-109 were utilized for the excitation of elements while a Si(Li) semiconductor detector coupled to a multichannel emulation card inserted in a microcomputer was used for the detection of the characteristic X-rays. The fundamental parameters method was used for the determination of elemental sensitivities and the irradiator or transmission method for the correction of the absorption effect of characteristic X-rays of elements on the range of atomic number 22 to 42 (Ti to Mo) and excitation with Cd-109. For elements in the range of atomic number 13 to 23 (Al to V) the irradiator method cannot be applied since samples are not transparent for the incident and emergent X-rays. In order to perform the absorption correction for this range of atomic number excited with Fe-55 source, another method was developed based on the experimental value of the absorption coefficients, associated with absorption edges of the elements.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2861
Author(s):  
Ulrike Künecke ◽  
Matthias Schuster ◽  
Peter Wellmann

The efficiency of Cu(In,Ga)(S,Se)2 (CIGSSe) solar cell absorbers can be increased by the optimization of the Ga/In and S/Se gradients throughout the absorber. Analyzing such gradients is therefore an important method in tracking the effectiveness of process variations. To measure compositional gradients in CIGSSe, energy dispersive X-ray analysis (EDX) with different acceleration energies performed at both the front surface and the backside of delaminated absorbers was used. This procedure allows for the determination of compositional gradients at locations that are millimeters apart and distributed over the entire sample. The method is therefore representative for a large area and yields information about the lateral homogeneity in the millimeter range. The procedure is helpful if methods such as secondary ion-mass (SIMS), time-of-flight SIMS, or glow-discharge optical emission spectrometry (GDOES) are not available. Results of such EDX measurements are compared with GDOES, and they show good agreement. The procedure can also be used in a targeted manner to detect local changes of the gradients in inhomogeneities or points of interest in the µm range. As an example, a comparison between the compositional gradients in the regular absorber and above the laser cut separating the Mo back contact is shown.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Sign in / Sign up

Export Citation Format

Share Document